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Submarine Slope Stability Forecasting
and

Back Analyses in Deep Water

by

Eric Arthur Liedtke

Deep water presents special problems in determining shear strengths,
stratigraphy and bathymetry. Slope stability analyses can be used to back-calculate
shear strengths, however, there is greater uncertainty than on dry land because
there is greater uncertainty in the bathymetry. The purpose of this thesis is to
determine uncertainty in submarine slope stability and back-calculated shear
strengths in deep water. In addition, a methodology for dealing with nonlinear
envelopes when back calculating shear strengths is explored. A series of parametric
studies were performed in which the influence of stratigraphy on stability was
investigated. Both circular and noncircular shear surfaces were assumed in the
stability analyses. A study also was performed to investigate the effects of
bathymetry on the stability of a deep water submerged slope. In particular, the
effects of uncertainty in the bathymetry on the evaluation of slope stability were
examined. In these studies, shear strengths were characterized assuming both

"drained" cases (¢ = 0) and "undrained" cases (¢ = ).

iv




Table of Contents

List of Tables xii
List of Figures xiii

1. Slope Stability in Deep Water 1

2. Variables and Uncertainties in Sea-Floor Stability and Shear Strengths3

2.1 Introduction 5
2.2 Back Analysis 5
2.2.1 Advantages of Back Analyses 7
2.2.2 Disadvantages of Back Analyses 7
2.2.2.1 Mechanics 8
2.2.2.2 Number of Unknown Strength Parameters 8
2.2.2.3 Three Dimensional Effects 12

2.3 Variability of Shear Strength 12
2.3.1 Variability of Shear Strength in the Vertical Direction i3
2.3.2 Variability of Shear Strength in the Lateral Direction is
2.4 Uncertainty in Bathymetry Measurements 19




2.5 Conclusions

3. Effects of Variability of Shear Strength in the Vertical Direction on

Slope Stability

3.1 Introduction

3.2 Variables

3.3 Dimensionless Variables

3.4’ Stability Calculations

3.5 Shear Strength

3.6 Case 1, Constant Strength Cohesion Soil
3.6.1 Procedure for Detecting Stability with Thin, Weak Seam
3.6.2 Verification of Dimensionless Parameters

3.6.3 Results

3.7 Case 2 « Cohesion Increasing Linearly with Depth
3.7.1 Variables
3.7.2 Procedure for Detecting Stability with Thin, Weak Seam
3.7.3 Verification of Dimensionless Parameters
3.7.4 Results
3.7.4.1 Circular Shear Surfaces

3.7.4.2 Noncircular Shear Surfaces

3.8 Case 3 - Friction Angle is Constant

vi

25

27

27
28
28
30
30

31
31
33
35

38
39
39
41
43
43

48

51




3.8.1 Variables
3.8.2 Procedure for Detecting Stability with Thin, Weak Seam
3.8.3 Verification of Dimensionless Parameters
3.8.4 Results
3.8.4.1 Circular Shear Surfaces

3.8.4.2 Noncircular Shear Surfaces

3.9 Conclusions

4. Variation of Back-Calculated Shear Strength and Slope Stability
Assuming Infinite Slope Conditions

4.1 Intreduction

4.2 Description of Profiles in Pigmy Basin

4.3 Variability in Shear Strength from Back Analyses

4.4 Variability in Stability from Forward Analyses

4.5 Conclusions

S. Spatial Variability of Shear Strength in the Lateral Direction

5.1 Introduction
5.2 The Seale of Fluctuation

5.3 Evaluation of the Scale of Fluctuation

vii

53
53
55
57
57
60

64

67

67
69
71
73
80
814
81
82

82




5.3.1 Correlation Coefficients 84

5.3.1.1 Formal Description and Properties of the Correlation Coefficient 84

5.3.1.2 Calculations for the Correlation Coefficient 85
5.3.1.3 Computer Program 93
5.3.2 Scale of Fluctuation Models 93
5.3.3 Results 95
5.3.4 Calculation of the Autocorrelation Distance 99

5.4 Propagation of Errors Associated in Calculating the Scale of

Fluctuation 102
5.4.1 Sources of Error 103
5.4.2 Mente Carlo Simulation 104
5.4.3 Results 106

5.5 Conclusion 110

6. Characterizing Stability along the Length of an Irregular Slope 112

6.1 Introduction 112
6.2 Slope Stability 113
6.3 Cross-Section C-C 113

6.4 Searching Method Restricting Lateral Coordinate of the Center of the
Circle 113

6.4.1 Description of Search Method 116

viti




6.4.2 Resnlts for Searching Method Restricting Lateral Coordinate of

the Center of the Circle 121

6.5 Searching Method with Shear Surface Restricted to Pass Beneath the
Center Point 124

6.5.1 Cohesionless Soil 127
6.5.2 Cohesive and Frictional Seil 136
6.6 Conclusion 137

7. Summary, Conclusions, and Recommendations for Future Work 141
7.1 Summary and Conclusions 141

7.2 Recommendations for Future Work 143

Appendix A Back-Calculated Nonlinear Shear Strength "Resistance”

Envelope 148

A.l Introduction 145

A.2 Variables 147

A.3 Stability Analysis 151

A.4 Methodology 151
A.4.1 Determine Combinations of ¢' and 6" Which Preduce a Factor of

Safety Equal to One Error! Bookmark not defined.

A.4.2 Determine Minimmum Shear Strength Envelope i52

AA4.3 Determine Normalized Nonlinear "Resistance Envelope” 156

ix




A.5 Verification of Dimensionless Variables
A.5.1 Effect of Slope Height

A.5.2 Unit Weight

A.6 Illustrative Example Calculations
A.6.1 Forward Analyses

A.6.2 Back Analysis
A.7 Conclusion
Appendix B Source Code for Computer Program VARREDF
Appendix C Users Manual For VARREDF
C.1 Input
C.2 Output

References

Vita

158
158

163

167
167

169

171

172

175

175

175

178

182




List of Tables

Table 2.1 Autocorrelation distances for shear strength in the vertical direction

{after Lacasse and Nadim, 1996) i eerciaaimer e reeesesrssntnes ieees 18
Table 2.2 Autocorrelation distances for shear strength in the horizontal direction

{after Lacasse and Nadim ,1996) oot sasesa e eenecana 20
Table 2.3 Multibeam echo sounder system characteristics.....vvvvcmniceneceeinnnnens 22

Table 3.1 Results for verification of dimensionless parameters for Case 1 -
constant strength cohesive SOtl......cuiiiiiiiiii e e 36

Table 3.2 Results for verification of dimensionless parameters for Case 2 -
cohesion increasing linearly with depth ..., 42

Table 3.3 Results for verification of dimensionless parameters for Case 3 - friction
angle IS CONSIANL. ..ot e e e 56

Table 5.1 Example input of lateral coordinates and the corresponding shear
38 (11241 « DO OO USROS 88

Table 5.2 Shear strength pairs put into bins corresponding to distances between
lateral COOFAINALES . ...cciuiiieiirirciiiriicee s eceeeeee e ebr v e s aae s s e s srambas sesnnmre e 89

Table 5.3 Expected values of shear strength pairs for the second bin (20m - 40m)91

Table 5.4 Frequency distribution for the difference between the maximum and the
minimum value of the scale of fluctuation for each of the 80 simulations1 07

Table A.1 Table showing that unique values for the dimensionless quantities
¢'/(YH) and tan ¢' are necessary to produce a factor of safety equal to unityl150

Table A.2 Combinations of ¢' and ¢’ and the corresponding factors of safety used

i the BNALYSES. s rra e e et e st atee e naren 153
Table C.1 Data input format forVARREDF .....coorvivriiviiiiiriiireciecciiie e 176
Table C.1 Data output format for VARREDF ..ot 177

%1




List of Figures

Figure 2.1 Nonlinear shear strength behavior for London clay(after Bishop et al.

FOB5 ) ettt et et et ee et n e s e ees e 10
Figure 2.2 Variation of shear strength in the vertical direction measured using a
vane shear device on cored samples (after Bryant et al. 1983)................. 14
Figure 2.3 Variation of shear strength in the vertical direction (after Bea et al.
L8 3 et e ettt e et ee ettt 15
Figure 2.4 Variation of undrained shear strength in the vertical direction (from
drop cores taken in the Guif of Mexico, Bryant et al., 1995)................... 17
Figure 2.5 Geometry of footprints for Sea Beam .........oocvveevevevemveeeeevesseoos 24
Figure 3.1 Variables defining slope geometry with thin seam.............ococoevevevennn., 29

Figure 3.2 Slope and shear strength variables for Case 1 - constant strength
CORESIVE SOTL.euriieiiiicirieiie i crccet ettt s s e re e re e et s e e e 32

Figure 3.3 Results for the location of the critical shear strength for Case 1 -
constant strength cohesive soil with § = 15 degrees and Coean/ Crtope = 1/2..37

Figure 3.4 Slope and shear strength variables for Case 2 - cohesion increases
finearly with depth ... ..o 40

Figure 3.5 Combinations of /H and d/H where seam effects stability for Case 2 -
cohesion increases linearly with depth with B = 15 degrees.......c.............. 44

Figure 3.6 Effect of slope angle on the combinations of /H and d/H where seam
effects stability for Case 2 - cohesion increases linearly with depth with
Coeam/ (C2¥A) = 1/2 et 46

Figure 3.7 Effect of slope angle on the combinations of /H and d/H where seam
effects stability for Case 2 - cohesion increases linearly with depth with
Coeam/ (028} = 173 oo 47

Figure 3.8 Effect of shape of shear surface on the combinations of ¥H and d/H

where seam effects stability for Case 2 - cohesion increases linearly with
depth with B = 30 degrees and ¢,..0/(¢,¥3) = 1/3 oo e 49

xi




Figure 3.9 Comparison of factors of safety using circular and noncircular shear
surfaces for Case 2 - cohesion increases linearly with depth with B =15

degrees and ¢, /€, %) = 12 i 52

Figure 3.10 Slope and shear strength variables for Case 3 - friction angle is
CONSLANL.cectitritrierriin e cr e e st r s s sans saes sarave s s b abeesnens 54

Figure 3.11 Combinations of t/H and d/H where seam effects stability for Case 3 -
friction angle is constant with B = 15 degrees..........ccoeeveieceveeeeeccvennane 58

Figure 3.12 Combinations of /H and d/H where seam effects stability for Case 3 -
friction angle is constant with B = 30 degrees..........cocevevveervinieirvrniaeennen. 59

Figure 3.13 Effect of shape of shear surface on the combinations of VH and d/H
where seam effects stability for Case 3 - friction angle is constant with § =
, 15 degrees and Co o,/ (C,*0) = 13 e 61

Figure 3.14 Effect of shape of shear surface on the combinations of t/H and d/H
where seam effects stability for Case 3 - friction angle is constant with B =

15° 80 Coram/(6,50) = 1/2 oot eceeeor e eseeeseeesseesseess s ses e 62

Figure 3.15 Effect of shape of shear surface on the combinations of YH and d/H
where seam effects stability for Case 3 - friction angle is constant with B =
15 degrees and o /(C.FA) T 1/3 . e eee s r e s ae e st e e eeeaee e 63

Figure 4.1 Bathymetry chart of Pigmy Basin in the Gulf of Mexico, with 50 meter
COTIEOUIS c1otvrvaeitivseriersnsse e mannr s oeseeesasves s sacansraresseesamsarbentasseeessennnensbasnssanonns 68

Figure 4.2 Plan view of cross-sections A-A, B-B, and C-C in Pigmy Basin with 20
TNELET COMEOUTS .ootiiiiiiiimriirns i eerceereetseaatasrervensene sarcansssasserern rennbbr s ansrsenens 70

Figure 4.3 Profile of cross-sections A~A, B-B, and C-C....coovooivveeivieee e, 72

Figure 4.4 Variation of ¢' along cross-section A-A assuming a factor of safety
EqUAL 10 UNILY wororerriice i s e anas s e eeasnans 74

Figure 4.5 Variation of ¢’ along cross-section B-B assuming a factor of safety equal
to unity............ bt h e b ee e e e taae taeeran et s nmeh e iantraee e e ennn or e arenemmenmeenes 75

Figure 4.6 Variation of ¢’ along cross-section C-C assuming a factor of safety equal

Figure 4.7 Variation of factor of safety along cross-section A-A assuming
cohesionless SO H . e 77

Figure 4.8 Variation of factor of safety along cross-section B-B assuming
cohesionless SOl e 78




Figure 4.9 Variation of factor of safety along cross-section C-C assuming

CORESIONIESS SOIL.eiiviciiivi ettt e 79
Figure 5.1 Simple triangular correlation StruCture...........ooovecevecevivnenveeeeseennnn. 83
Figure 5.2 Example of the cross-sectional geometry and shear strengths used in the
BIAIYSES .ot a e e ettt e e e s 86
Figure 5.3 Correlation coefficient versus normalized distance.............ovoovoveveo... 94

Figure 5.4 Correlation coefficients versus length for cross-section C-C in Pigmy
Basin, Gulf of MeXiC0......cccviveiei vt seeee e e se s eeresseeereneessemesses e e 97

Figure 5.5 Comparison of four different correlation functions to the correlation
coefTicients using a scale of fluctuation equal to 275 Mu.euveececueerennnnnn.. 98

Fig{zre 5.6 Results of the calculated correlation coefficients and the exponential
correlation function using a scale of fluctuation equal to 250 m, 325 m, and
BO0 Mottt et e er e ettt err e e st 160

Figure 5.7 Tlustration of the determination of autocorrelation distance from the
scale Of fIUCRIAtON. ....c.c.cciii ettt e 101

Figure 5.8 Frequency distribution for the scale of fluctuation based on 80 Monte
Carlo SIRUIBLONS.......o. ittt 109

Figure 6.1 Soil densities for drop cores 4 and 8 in Pigmy Basin (after Bryant et al,,
D05 Y ettt ene e 114

Figure 6.3 Example of search method restricting lateral coordinate of the center
Of the CIrCle. ..ot 117

Figure 6.4 Twenty-six vertical lines spaced 152.4 meter apart used for restricting
the circular shear sUrface Centers.........o.ovueuueieeeeeseeneeeessoeos oo 118

Figure 6.5 Example of subdividing radius around local minimum factor of safetyl1 20

Figure 6.6 Comparison of factors of safety using infinite slope and restricted
center for cross-section C-C assuming cohesionless soil...oovo . 122

Figure 6.7 Figurative example of result for the variation in the factor of safety for
cross-section C-C for the search method using restricted centers........... 123

Figure 6.8 Example of accepted and rejected shear surfaces based on criteria
restricting location of shear surface relative to lateral coordinate of centerl 26

Xiv




Figure 6.9 Variation in factors of safety with location using location (infinite
slope} or center point (circle) using infinite slope, restricted center, and
restricted center and restricted shear surface extent for cross-section C-C
assuming cohesionless s0il ... 128

Figure 6.10 Relationship between subtended angle (8) and the slope angle (B)... 129

Figure 6.11 Relationship between subtended angle (8), the slope angle (B), and the
relative slide depth d/L.. ... 130

Figure 6.12 Comparison of circle crossing beneath center with circle not passing
bEneath Cemler. ..ottt e et s 132

Figure 6.13 Influence of depth to length of circle on the factor of safety for
cohesionless Soil ... 134

Fiéure 6.14 Minimum factor of safety for slope using results from infinite slope
and the modified search method restricting the lateral extent of the circlel 35

Figure 6.15 Variation in factor of safety with the center point (circle) using the
restricted center and restricted shear surface extent along cross-section C-C
for a soil containing both friction and cohesion........cccciiriiiviniennccans 138

Figure 6.16 Resuits showing how the addition of cohesion smoothes the variation
in the factor of safety along an irregular slope........ocoviciiiinininiciennnnn 139

Figure A.1 Representation of resistance envelope suggested by Casagrande (1950)Error! Bookmark
Figure A2 Slope geometry and variables.......ccccooivviiiic e 148

Figure A.3 Linear shear strength envelopes corresponding to F=1.00and H=
30.5 m for y= 157 KN/m>and P = 30 degrees....ccoerrvvecrvrceecvererenreninns 154

Figure A.4 Minimum shear strength envelope for H = 30.5 m, y = 15.7 kN/m*and
B = 30 dERIEeS ...ooviiieir it e e 155

Figure A.5 "Resistance envelope” for H = 30.5 m, Y= 15.7 kN/m’ and B = 30
QEETEES ..ttt e et e a b e e ne e e 157

Figure A.6 Linear shear strength envelopes corresponding to F = 1.0G and H =
122 m fory= 157 kN/m”  and B = 30 degrees.....ooovvvoecveeoiereecraeene 159

Figure A.7 Linear shear strength envelopes corresponding to F = 1.00and H =
106.7 m for y = 15.7 kKN/m® and B = 30 degrees .oorveeierirrcrenrerrrenneionne 160

Figure A.8 Minimum shear strength envelopes for each slope height fory = 15.7
KN/ and B = 30 QIS ..vvevvveveereeeirinesceesassemssense e ssrseessrmssnsssrs s 161




Figure A.9 "Resistance envelope" independent of slope height for y = 15.7 kKN/m®

and B =30 degrees.. ..o e e, 162
Figure A.10 Minimum shear strength envelopes for each unit weight for H = 106.7

m and =30 degrees.....c.oouivneiciiir e e 164
Figure A.11 "Resistance envelope" independent of unit weight for H = 106.7 m

and B = 30 degrees......ooiciiniiieece e et 165
Figure A.12 "Resistance Envelope" for B = 30 degrees......ccoorvvvrevmuvoverereeienn, 166

Figure A.13 Resistance envelope and linear envelope for forward analysis examplel 68

Figure A.14 Resistance envelope and linear envelope for back analysis example 170

xvi




1. Slope Stability in Deep Water

Slope stability is a problem in deep water. Bathymetry data from Pigmy Basin
in the Guif of Mexico reveals slopes steeper than 50 degrees are present and suggests
that slope stability may be a problem. In fact, samples recovered from piston cores
indicate soil may be slumping from the basin walls onto the basin floor. The slumping
process raises questions about overall stability in the region. In particular, instability is
a problem for oil production facilities located in the Gulf of Mexico. Foundations for
oil platforms may be located on or near slopes. In addition, pipelines associated with
the production of oil may have routes which bring them on or near slopes. Both of these
underwater facilities are subject to damage from landslides associated with instability.
In order to assess stability several variables used in stability analyses must be
quantified. These variables include shear strength, stratigraphy, and bathymetry.

Shear strength information for soil in deep water is both difficult and expensive
to acquire. Standard sampling techniques used on land cannot be employed in deep
water. Specialized techniques and tools developed for the purpose of recovering
samples in deep water are costly. Pressure relief caused by bringing samples to the
surface may cause cavitation, w'hic%a,, in turn, may cause disturbance in the sample. A
discussion of the factors which make obtaining shear strength information in the
offshore environment difficult and expensive is given by Hoeg (1983), Richards and

Zuidberg (1986), and Doyle (1994).




An alternative to measuring shear strength properties directly is to infer shear
strength through back-calculation, Shear strengths can be back-calculated if slope
stability is known. In back-calculation, also termed “back analyses”, the factor of
safety is assumed to be known, i.e. the factor of safety is assumed to be one. Stability
calculations are performed and the shear strength required to produce a factor of safety
equal to unity is determined. Back-calculation of shear strength in this manner avoids
the difficulties and expense of acquiring samples for laboratory testing. However, back~
calculations can be difficult and may lead to inconclusive results. The advantages and
disadvantages of back-calculating shear strength are discussed further in Chapter 2.

Shear strength varies in the vertical direction. Variation of shear strength in the
vertical direction is shown in Chapter 2. In addition, a series of deterministic,
parametric stability studies was performed to understand how varnability of shear
strength in the vertical direction effects stability. Variability of shear strength in the
vertical direction was modeled by introducing a thin seam of weak material within an
otherwise uniform slope. The effects from the location of the seam within the slope, the
thickness of the seam and the shear strength of the seam relative to the shear strength of
the rest of the slope were quantified. Both “undrained” and “drained” shear strength
representations were used for the soils. Also, both circular and noncircular shear
surfaces were considered and compared in the analyses. Results are presented in

Chapter 3.




Shear strength also varies in the lateral direction. Varability of shear strength
in the lateral direction is shown in Chapter 2. The variability of both shear strength and
stability along three cross-sections was examined using infinite slope analysis
procedures for three irregular slope profiles obtained from bathymetry data for Pigmy
Basin in the Gulf of Mexico (Bryant et al., 1995). The results are shown in Chapter 4

Results from the investigation of variability in shear strength along the length of
a slope were used to determine the correlation structure of shear strength in the lateral
direction, The results for the correlation structure of shear strength in the lateral
direction are presented in Chapter 5. Also presented in Chapter 5 is an examination of
the effect from the uncertainty in the method used to obtain the slope profile on the
outcome of the correlation structure. A random error was associated with the method
used to obtain the slope profile from the bathymetry data. The effects of this error on
the variability of the back-calculated shear strength in the lateral direction was modeled
using Monte Carlo simulations.

The variation in stability for one of the slopes profiles in Pigmy Basin analyzed
in Chapter 4 was recvaluated using a method of slices and circular shear surfaces. The
results are presented in Chapter 6. A comparison between the results previously
obtained using infinite slope procedures and the results obtained using circular shear
surfaces is made. Based on the results of the comparison, a method for systematically
determining the minimum factor of safety along the cross-section of an irregular slope

was developed. The method varies slightly depending on whether the soil has either




cohesive and frictional properties or 13 cohesionless. The method and results are
presented in Chapter 6.

A summary of this thesis is presented in Chapter 7. In addition, conclusions
based on the work presented in this thesis and recommendations for future work are also

presented in Chapter 7.




2. Variables and Uncertainties in Sea-Floor Stability and Shear Strengths

2.1 Introduction

Shear strength is one of the most important properties for assessing slope
stab_«ility, and it may be difficult and expensive 10 measure directly in deep water.
Difficulties in measuring shear strength of soils in deep water can be avoided by using
back analyses techniques. An overview of back-calculating shear strengths along with
some advantages, disadvantages, and hmitations associated with the approach is
presented in this chapter.

The variability of shear strength is discussed in this chapter. Spatial variability
of shear strength in the vertical and lateral directions can be investigated through soil
borings or inferred either through geophysical methods or from existing stability
conditions. Variability of shear strength in the vertical and lateral directions is also
obtained from cone penctration resistance measurements.

Bathymetry is an important parameter needed for assessing slope stability, The
uncertainty in bathymetry measurements is discussed in this chapter. Bathymetry .is .
usually measured using acoustic waves. Uncertainty is inherent in the measurements of

bathymetry taken by sonar due to resolution and accuracy constraints,

L




2.2 Back Analysis

Slope failures provide a useful opportunity to back-calculate shear strength. In
order to back-calculate shear strength, a single value or range of values for the factor of
safety must be known. In general, the factor of safety is assumed to be equal to one for
a failed slope. Shear strength can then be determined through back analyses using the

information regarding the factor of safety. The factor of safety is defined by,

F= 43

ERL

where F is the factor of safety, s is the available shear strength, and 1 is the shear
strength required for static equilibrium.

The process of back-calculating shear strengths begins by assuming a value for
shear strength. Stability analyses are performed and the factor of safety is calculated.
The shear strength parameters that will result in the desired factor of safety (unity), for
the shear surface used in the analyses, can be calculated using the values for both the

calculated factor of safety, F and the assumed shear strength parameters, Cuumed and

€ assumed
Cpy W e 2
F=1 - @
Fal T ¢m;md (3}

If stability is reanalyzed using - and ¢z the resulting factor of safety will be umnity.

Calculating shear strength through back analyses has both advantages and




disadvantages compared to measuring shear strength directly in either the laboratory or
in the field. A procedure which can be used to back-calculate shear strength is

presented in Appendix A from work previously performed by Casagrande (1950).

2.2.1 Advantages of Back Analyses

Duncan and Stark (1992) discuss the advantages of back-calculating shear
strength as opposed to using conventional laboratory or field testing methods to
determine shear strength. They point out that the problem of sample disturbance is
avoided, scale effects in the laboratory, such as sample size and length of the shear
surface do not influence results, and times to failures are typically not hurried as they
might be in the laboratory. Duncan and Stark also site several cases where back-
calculated shear strengths are in good agreement with results from laboratory testing.
However, they indicate that in order for the shear strengths from back analyses and
laboratory testing to be in good agreement the soil conditions must be simple and
conditions at failure must be accurately known. Advantages of using back analyses as
opposed to direct measurements to determine shear strength make back-calculations of

shear strength especially attractive for slopes in deep water.

2.2.2 Disadvantages of Back Analyses

Disadvantages of back-calculating shear strengths include effects of
assumptions required to make the problem statically determinate (mechanics of method

of slices procedures), the existence of more unknown values (c and ¢) than available




equations (equation for factor of safety), and quantifying the uncertainties caused by
using two-dimensional analyses for three-dimensional problems. Each of these

difficulties will be discussed in the following sections.

2.2.2.1 Mechanics

Method of slices used to solve slope stability problems require that assumptions
be made regarding one or more of the unknown forces and their locations in order for the
problem to be made statically determinant. A thorough discussion into these two issues
is beyond the scope of this paper, however, a brief discussion on these matters follows.

Fredlund and Krahn (1977) performed comparative analyses using six different
method of slices techniques used for stability analyses. Variations in the calculated
factor of safety were determined using the six different techniques. Frediund and Krahn
compared factors of safety calculated by the ordinary method, simplified Bishop
method, Spencer's method, Janbu's simplified method, Janbu's rigorous method and the
Morgenstern-Price method. The authors found that for a simple slope theré was an eight
percent difference between the highest and lowest value of the factor of safety and for a
more complex slope there was an 11 percent difference between the highest and lowest
value of the factor of safety. Similar values have been reported by Duncan and Wright
{1980). Once the mechanics have been solved and a method to perform the stability
analyses has been selected, a separate problem exists which involves having too many

unknown shear strength parameters to solve for using the available slope stability

equations.




2.2.2.2 Number of Unknown Strength Parameters

The shear strength expressed in terms of the Mohr-Coulomb equation and total

stresses is given by

s=c+otand 1)
where s is the shear strength, ¢ is the cohesion, o is the total normal stress, and ¢ is the
angle of internal friction. Similarly the shear strength in terms of effective stress is
given by

$ = c'+o'tan ¢’ ' 2)
“;here ¢’ is the effective cohesion, o is the effective normal stress, and ¢' is the effective
stress angle of internal friction.

In general, a problem associated with back-calculating shear strengths lies in the
fact that there is only one factor of safety associated with two unknown quantities ¢ and
¢ (or ¢’ and ¢"). Thus, with the exception of two special cases, cohesion equal to zero or
friction angle equal to zero (¢ = 0 or ¢ = 0), the problem requires that two values be
solved for one factor of safety.

The problem of an excess of unknown values is further complicated if the shear
strength envelope is nonlinear. Shear strengths of many soils are more accurately
represented by a nonlinear shear strength envelope, particularly if the range of stress is
large. Laboratory measurements presenied by Bishop, Webb, and Lewin (1965} show
such a nonlinear trend for shear strength. Figure 2.1 shows a nonlinear shear strength

envelope for London clay under drained triaxial compression. More recent work

performed by Stark and Eid (1994) indicate that the drained residual envelopes for
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Figure 2.1 Nonlinear shear strength behavior for London clay(after Bishop et al. 1963)
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several clays and shales are nonlinear. Duncan et al. (1978) suggest representing a
nonlinear shear strength envelope for effective stress in the form,

s= ¢+’ tan[d)'o @A@'En(f}}] (2)
where o is a “normalizing” effective (reference) stress, Ad' is the change in the effective
stress friction angle due to the change in effective normal stress and ¢'s is the effective
stress secant friction angle when the effective normal stress is equal to the normalizing
stress. If such a nonlinear envelope is used to describe the shear strength, there are three
unknown shear strength parameters: ¢!, ¢’ and A¢'. There is again a problem back-
calculating shear strength because there are three unknown values and only one factor of
safety.

Duncan and Stark (1992) attempted to back-calculate unique values for shear
strength parameters ¢' and ¢' from a series of slope stability failures. The slope failures
were located in the same geographic region and occurred within the same soil type. In
theory, a unique combination of ¢ and ¢ can be back-calculated if the location of the
shear surface within the slope is known. However, Duncan and Stark indicate that
knowledge regarding the location of the failure surface does not help resolve the problem
of too many unknowns because of effects of progressive failure and heterogeneity of

shear strength within the slope. In conclusion, Duncan and Stark determuned that back-

calculating unique values for shear strength parameters ¢’ and &' is not possible for most




cases and suggest that a value be assumed for ¢', based on judgment and experience, and

then a corresponding value for ¢' can be back-calculated.

2.22.3 Three Dimensional Effects

Seed et al. (1990), Stark and Poeppel (1994), and Byme et al. (1992} performed
comparative analyses using both two-dimensional and three-dimensional slope stability
analysis procedures. All three sets of investigators independently analyzed stability for
Kettlemen Hills landfill. Seed et al. determined it is possible that the maximum two-
dimensional cross-section overestimated the factor of safety compared to the three-
dimensional analyses in some cases. Byme ¢t al. determined the three-dimensional
analyses produced higher values for the factor of safety than the two-dimensional
analyses for some cases. Finally, Stark and Poeppel, using peak and residual shear
strengths for different parts of the failure surface determined that in some cases the
three-dimensional factor of safety is greater than the two-dimensional factor of safety
and in other cases the two-dimensional factor of safety is greater than the three-
dimensional factor of safety. From the findings of the three sets of researchers it
remains unclear if a two-dimensional back analyses will overestimate or underestimate
shear strength.

A probabilistic procedure which accounts for the effects of the uncertainty
associated with the mechanics of the procedure of slices (Section 2.2.2.1 and two-
versus three-dimensional effects on back-calculated shear strength is given by Gilbert et
al. (1996). Gilbert et al. avoid the problem of the number of known quantities for one
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factor of safety (Section 2.2.2.2) by assuming a range in values for the factor of safety

to determine back-calculated shear strength parameters.

2.3 Variability of Shear Strength

Variability of shear strength should be accounted for in evaluating stability in
deep water. Shear strengths usually vary spatially in both the vertical and lateral
directions. The following sections show the variability of shear strength in the vertical

and lateral directions.

2.3.1 Variability of Shear Strength in the Vertical Direction

Variation of shear strength in the vertical direction is perhaps more important
for foundation design that it is for pipelines, especially if the foundation is a pile
foundation which extends vertically vefsus pipelines which extend laterally. Figure 2.2
shows undrained shear strength as a function of depth, for an offshore soil in the Gulf of
Mexico taken during leg 96 of the Deep Sea Drilling Project from Bryant et al. (1983).
In general, the trend is for the shear strength to increase with increasing depth below the
surface. However, large fluctuations of shear strength occur locally. For example, the
data in Figure 2.2 show a sharp decrease in shear strength of more than a factor of two
at a depth of about 56 meters. Such an abrupt change in shear strength may indicate 2

transition berween two soil types.

The shear strength measurements shown in Figure 2.3 were reported by Bea et

al. (1983). The data again show similar trends in the variation of undrained shear
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Figure 2.2 Variation of shear strength in the vertical direction measured using a vane
shear device on cored samples (after Bryant et al. 1983}
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strength as a function of depth. Shear strength measurements in Figure 2.3 were
performed for an éf‘i‘shore soil in the Mississippi delta. Again, the general trend is for
the shear strength to increase with depth and for variability to occur at the local level.

Shear strength data are shown in Figure 2 4 from measurements taken using a
vane shear device on a sample recovered from a drop core in Pigmy basin in the Gulf of
Mexico from Bryant et al. (1995). Large variations of shear strength in the vertical
direction can be seen shown in this figure over a distance of only three meters
ﬁarticuiarly at depths between 1.9 and 2.3 meters.

Figures 2.2 and 2.3 show variations in shear strength over a large range in
depths while Figure 2.4 shows similar variation but at a much smaller scale. Thus,
there are different scales of fluctuation depending upon the scale of the measurements.
Variability of shear strength in the vertical direction can be quantified by a parameter
such as the autocorrelation distance. The autocorrelation distance is an indicator of the
distance in which a variable is correlated. The variable in this case is shear strength.
As an example, if the shear strength changes (increases or decreases) as the distance
between two points increases then the correlation between the shear strength of the soil
decreases as the distance between the points increases. If the autocorrelation distance is
large, one would expect a smaller variation in shear strength over a given distance
compared to the variation in shear strength if the autocorrelation distance was smaller.

Shown in Table 2.1 are autocorrelation distances for shear strength in the vertical
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Figure 2.4 Variation of undrained shear strength in the vertical direction (from drop
cores taken in the Guif of Mexico, Bryant et al., 1995)
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Table 2.1
Autocorrelation distances for shear strength in the vertical direction (after Lacasse and

Nadim ,1996)
Soil Type Autocorrelation Distance Reference
{meters)

Clean sand 3 Alonzo and Krizek (1975)

Mexico Clay ! Alonzo and Krizek (1975)
Clay 1 Vanmarcke (1977}
Sensitive Clay 2 Chiasson et al. (1995)
Silty clay 1 Lacasse and Lamballerie (1995)




direction which were summarized by Lacasse and Nadim (1996). Shear strength was

inferred from the results of cone penetration tests

2.3.2 Variability of Shear Strength in the Lateral Direction

Variation of shear strength in the lateral direction is perhaps more important for
pipelines than it is for the design of foundations since pipelines cover significant lateral
distances compared to most, but not all foundations. Soil adjacent to a boring may be
expected to have similar properties to those measured on samples obtained from the
boring. However, the soil in an adjacent valley or canyon some further distance away
may have a completely different set of properties than the properties measured in the
sample from the boring. Somewhere between the boring and the adjacent valley or
canyon the soil properties change. The change or changes in soil properties may be
gradual or abrupt. Table 2.2 indicate autocorrelation distances for shear strength (from
cone penetration tests) in the lateral diréctioﬂ for several offshore soils and a clay from
work summarized by Lacasse and Nadim (1996). The results shown in Tables 2.1 and
2.2 indicate spatial variability of shear strength exists in both the vertical and lateral
directions and that over a short distance a higher degree of variability in shear strength

would be expected in the vertical direction.

2.4 Uncertainty in Bathymetry Measurements

On land slope geometry is generally considered known and with iow uncertainty.

Technology has existed for many years that can and is used to acquire
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Table 2.2
Autocorrelation distances for shear strength in the horizontal direction (after Lacasse

and Nadim, 1996)
Soil Type Autocorrelation Distance Reference
(meters)
Offshore soils 30 Hoeg and Tang (1976), Tang (1979)
Offshore sand 14-38 Keaveny et al. (1989)
Silty clay 5-12 Lacasse and Lamballerie (1995)
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accurate measurements of slope geometry (topography). The accuracy .pcssible for
measuring slope geometry on land far exceeds the resolution required for stability
analyses given the uncertainties in measuring other parameters such as shear strength
and pore water distribution. In contrast, measurement of bathymetry in deep water can
have uncertainties not normally associated with measurements of slope geometry on
land. Because of the uncertainty in bathymetry measurements in deep water there is
greater uncertainty in stability in deep water than on land.

Bathymetry in deep water is measured by acoustical soundings. The two
devices most commonly used to measure bathymetry in deep water are Sea Beam and
SeaMARC II. Information about the h§o devices including the manufacturer of the
devices is presented in Table 2.3 (after Tyce, 1986) A thorough description of Sea
Beam is given by de Moustier and Kleinrock (1986), and for Sea Beam and SeaMARC
II by Tyce (1986), and Davis et al. (1986) among others.

Sea Beam is a hull mounted multibeam echo sounder which produces
bathymetry maps in real time. A multibeam echo sounder uses a series of emitters and
receivers to measure bathymetry. Sea Beam has 20 emitters. The area, or “footprint,”
from the 20 transmitters is a single beam 2 2/3 degrees wide along (parallel to) the track
of the ship and 54 degrees wide across (perpendicular to} the track of the ship. The
transmitting beamn is adjusted for the pitch of the ship and is orientated such that the
sonar pulse is released in the vertical direction. The recgiving beams form 16 discrete

beams 20 degrees wide along-track and 2 2/3 degrees wide across-track. The receiving
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Table 2.3

Multbeam echo sounder system characteristics

Sea Beam SeaMARC I
Date introduced 1976 1982
Manufacturer General Instruments Hawaii Institute of
Corporation Geophysics and Intemnational

Submarine Institute
Tow depth Hull mounted 50-100m
Water depths > 10 km > 10 km
Cross track resolution 14 m 5m
(5 km water depth)
Along track resolution 233m 175m
{5 km water depth)
Bathymetry accuracy 150 m 10-50m
(5 km water depth)
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beam is 20 degrees along-track to account for a 10 degree pitch of the ship at the time
of reception of the return beam, i.¢. the receiving beam is not adjusted for the pitch of
the ship. Figure 2.5 illustrates the geometry of the beam footprints. Figure 2.5 is only
meant as an mdication of the overall geometry. The actual footprints are elliptical in
shape and the size of the footprint increases the further the footprint is towards the outer
edge. SeaMARC Il is a shallow towed multibeam echo sounder which collects both
bathymetry and long range imagery information. This device uses the same technology
to measure bathymetry.

The return signal from each of Sea Beam's 20 emitters is picked up by the 40
receivers which form 16 discrete footprints. From this information the maximum
elevation of the seafloor can be determined by measuring the travel time of the wave
from the source to the bottom and back to the receiver and knowing the speed of
compression waves in sea water. However, the location of the maximum seafloor
elevation within each footprint can not be determined since each footprint is composed
of one wave. Thus, as the seafloor becomes increasingly deeper there becomes an
ncreasingly larger possible area in which the measured maximum seafloor elevation
may be located. In simple terms, there is only one data point measured from each of the
16 footprints on the seafloor for each set of impulse signals emitted. Each measured
data point is associated with a latitude and longitude as well as an elevation. Using a
series of these poinis contours are drawn and the bathymetry charts made. Bathymetry

charts are made in the same fashion by acoustical measurements taken by SeaMARC II.
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Figure 2.5 Geometry of footprints for Sea Beam

24



The primary difference between how bathymetry information is determined using Sea
Beam and SeaMARC 11 is in the number of receiving beams. SeaMARC I uses one
pair of receivers to determine the angle which the transmitted beam is reflected from the
sea floor as compared to the 40 receives used by Sea Beam for the same measurements.
Because SeaMARC 11 uses only two receivers it is more prone than Sea Beam to errors
associated with multiple echoes created on the sea floor.

The uncertainty in the location of the measured point within each footprint ts
d;rscribed by the resolution in the measurement. The resolution in bathymetry data
measured can be determined by the beam geometry and the length of the water column.
The across-track and along-track resolution for Sea Beam and SeaMARC 11 are shown
in Table 2.3 for a water depth of 5 kmm. There is also uncertainty associated with the
depth of the measured data point which is described by accuracy. The accuracy of
bathymetry measurements in 5 km of water is shown in Table 2.3 for both Sea Beam

and SeaMARC II. The uncertainty in bathymetry data comes from the resolution and

accuracy of bathymetry measurements,

2.5 Conclusions

Two important parameters for the assessment of slope stability, shear strength
and bathyrnetry, are discussed m this chapter. [t was shown that back-calculations can
be performed to obtain shear strength information which avoids the difficulties and
expenses required to directly measure shear strength. However, back-calculating shear
strength may lead to inconclusive results unless the soil conditions are either purely
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cohesionless (¢ = 0) or purely cohesive (¢ = 0). Typical variability of shear strength in
the vertical and lateral directions has been shown. The variability of shear strength in
 the vertical direction will be explored further in Chapter 3. Variability of shear strength
in the lateral direction will be investigated in Chapters 4 and 5. Also, uncertainty in
bathymetry information has been illustrated by examining resolution and accuracy in
bﬁthymetry measurements for two bathymetric measuring devices. Slope profiles

obtained using bathymetry charts are used in Chapters 4, 3, and 6.
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3. Effects of Variability of Shear Strength in the Vertical Direction on Slope

Stability

3.1 Intreduction

The effects of variability of shear strength in the vertical direction on slope
stability are examined in this chapter. Numerous sets of slope stability calculations
were performed in which a thin, weak layer of soil in an otherwise uniform slope was
us'.ect to represent variability of shear strength in the vertical direction. Parametric
studies were performed where the depth to the seam, representation of shear strength (c -
0; ¢ = 0), relative values of shear strength of the seam and the surrounding soil, slope
angle, and shape of the assumed potential shear surface were varied to investigate the
thickness of the seam required to just affect stability. Results are presented in
dimensionless form in charts.

Three representations of shear strength were used. For the first two
representations the shear strength was represented by cohesion with the angle of internal
friction equal to zero. These two shear strength representations correspond to the
familiar "$ = 0" case which is applicable to shear strength during undrained, "short-
term” loading of saturated soils. For the third representation, shear strength was
represented by an angle of internal friction with cobesion equal to zero. This "¢ = 0"
representation of shear strength is an appropriate representation of shear strength for

drained, "long-term" loading
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The effects of the assumed shape for the shear surface in the slope stability
calculations was also investigated for two of the shear strength representations. Both
circular and noncircular shear surfaces were used for this purpose. Slope angles of 15

degrees and 30 degrees were examined.

3.2 Variables

The variables defining the slope geometry are shown in Figure 3.1. Dimensions
gonsist of the slope height (H), the depth beneath the surface of the slope to the top of
the seam (d), and the thickness of the seam (t). The inclination of the slope face is
measured from the horizontal and designated as an angle, B. The seam was assumed to
be parallel to the face of the slope. Thus, B also describes the inclination of the portion
of the seam beneath the slope. The unit weight of soil, (y) was assumed to be constant

and the same for both the seam and surrounding material.

3.3 Dimensionless Variables
Dimensionless variables were used to reduce the number of analyses that needed
to be performed. The dimensionless variables used for the geometry are t/H and d/H,

The validity of the dimensionless variables is investigated and the results presented in

the following sections.
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Figure 3.1 Variables defining slope geometry with thin seam




3.4 Stability Calculations
The slope stability program UTEXAS3 (Wright, 1991} was used to calculate
the factor of safety. The factor of safety, F, was calculated by Spencer’s (1967) limit

equilibrium method of slices procedure and is defined as

F=2 )

T
where, s is the available shear strength of the soil and 1 is the shear strength required for
static equilibrium.

All the slopes were assumed to be fully submerged. To account for

submergence in the analyses buoyant unit weights were used and pore water pressures

were set 1o zero.

3.5 Shear Strength

Three representations of shear strength were used for these studies. For the first
representation of shear strength, the strength was represented entirely by cohesion and
was assumed to be constant, independent of depth within a particular stratum. In the
second case the shear strength was also represented by cohesion, but the cohesion was
assumed to increase linearly with depth below the surface from a value of zero at the
surface. In both cases the shear strength for the seam was assumed to be constant and
different contrasting strengths were assumed for the seam. For the third representation
of shear strength, the strength was represented entirely by "friction” and the angle of

internal friction was assumed to be constant within each stratum. Different shear




strength contrasts (different friction angles) were used for the strength of the seam and

the slope.

3.6 Case 1, Constant Strength Cohesion Soil

For this first case the strength of both the slope and the seam were assumed to
be constant and represented by values of cohesion (¢ = 0). The variables describing the
slope geometry have previously been defined and are shown again in Figure 3.2 with the
variables which describe the shear strength. The ratio of the cohesion in the seam to the

cohesion of the surrounding soil, Cyeam/Calope, Was used as a dimensionless parameter.

3.6.1 Procedure for Detecting Stability with Thin, Weak Seam

For each slope the factor of safety of the slope without the seam was calculated

first. For a purely cohesive soil the factor of safety can be expressed as

F=N, —1;% @)
where, N, is a dimensionless stability number. The value of N, depends on the slope
angle and the depth to any significantly firmer stratum below the slope. If the slope
angle is less than 53 degrees and the firm stratum is infinitely deep N, has a value of

5.53 (Janbu 1954), ie.

o
F=553—. 3
H (3

If the slope is steeper than 53 degrees or the depth to a much stronger foundation layer

is not infinite then the value of N, depends upon both the slope angle and the depth to the
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Figure 3.2 Slope and shear strength vanables for Case 1 - constant strength cohesive
soil
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foundation layer. For the analyses presented in this chapter, slope angles less than 53
degrees were used and the depth to the foundation was considered infinite. Thus,
Equation 3 was used to calculate the factor of safety for the slope without the seam.

For a slope without a significantly firmer stratum at depth, the most critical
potential shear surface will tend to go infinitely deep. Thus, introducing a seam of lower
shear strength soil will always effect stability since the potential shear surface will pass
through the scam.

Of interest in this investigation was the minimum thickness of the seam required
to cause the critical circular shear to pass into, but not below, the seam. For example,
for a thin seam at a given depth the critical circle may pass through the seam and
continue on to significant depths. However, as a progressively larger seam thickness is
considered, there will exists a seam thickness such that the critical circle passes into, but
not below, the seam. This seam thickness is termed the "critical” seam thickness for the
given depth and shear strength conditions. The process of varying the seam thickness

was repeated for various depths of the seam.

3.6.2 Verification of Dimensionless Parameters

To verify the uniqueness of the various dimensionless parameters used, a series
of stability calculations was performed where values for individual quantities in the
dimensionless variables were changed. The effects from the changes of these variables
on the dimensionless thickness ratio (VH) required to cause the critical shear surface to
be confined to the seam were investigated. Values for the dimensionless parameters
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(d/H and Cyam/Csiope) Were kept constant while the magnitudes of the individual variables
were changed. The variables H, ¥, Cucam and Cyape were changed.

The verification calculations are summarized in Table 3.1 The values for /H
and Cyear/Caiope fOT €ach set of data were kept constant and the effects of the values of the
changed parameters on the critical seam thickness were determined. The first set of
values (first row) in the table represent the base parameters used for further comparison.
For this set of geometry and shear strength parameters the critical seam thickness is
}7.1 ft and UH is 0.43. The second set of values (second row) illustrates the effect of
increasing the slope height. The third set illustrates the éffect of changing the magnitude
of the shear strengths; and the fourth and final set illustrates the effect of changing unit
weight. In ail cases, the ratio t/H was unaffected by the changes in the values of the
variables. The factor of safety shown in Table 3.1 for each case is different due to the

changes in the values of the variables defining the factor of safety. However, the values

. . . F
for the dimensionless ratio, N = —————— for all four cases are the same. These
¢

seam /Y
results verify that the absolute value of slope height, shear strength, and unit weight do

csl:am

not affect the critical seam thickness ratio, VH as long as is constant.

¢ slope

3.6.3 Kesults

Figure 3.3 shows the relationship between the dimensionless critical seam

thickmess, t/H, for different dimenstonless depth factors, d/H. The results are for a slope
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Table 3.1

Results for verification of dimensionless parameters for Case 1 - constant strength

cohesive soil
H 1 d |dH| Coeam | Colope | Coead | 7 t tH | Factor F/
ft { f psf | psf | Cuope | pef | # of safety | (c.an/YH)
40 1201051400 | 800 | 05 (100 | 17110431 1.106 11.06
120160 1 051 400 { 800 | 05 | 100 {51.7 1043 | 0.369 11.07
40 120105} 700§ 1400 | 05 | 100 {17.1]043 | 1936 11.06
40 1201057400 800 | OS5 30 11711043 3638 11.06
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Figure 3.3 Results for the location of the critical shear strength for Case 1 - constant
strength cohesive soil with B = 15 degrees and Coeum/Ctope = 1/2
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angle of 15 degrees and a dimensionless strength ratio, Cseamn/ Cstope OF One-half.
Combinations of “H and d/H represented by points along the line represent conditions of
scam thickness and depth where the critical seam thickness is "captured by the seam®,
i.e. the critical shear surface passes into, but not below, the seam. With no seam it will
be recalled that the critical shear surface goes infinitely deep. Combinations of t/H and
éfH which plot above the curve in Figufe 3.3 represent conditions where the critical
shear surface passes into, and not below, the seam and the factor of safety is less than
the factor of safety calculated for the critical seam thickness. Combinations of t/H and
d/H which plot below the curve in Figure 3.3 represent conditions where the critical
shear surface passes through the seam, continuing to a lower depth, and the factor of
safety is still less than the factor of safety for a homogeneous slope with no scam. The
results presented in Figure 3.3 indicate that for deeper seams the thickness required to

“capture” the critical shear surface is reduced.

3.7 Case 2 - Cohesion Increasing Linearly with Depth

For the second case the soil strength was again assumed to be purely cohesive,
but the cohesion increases linearly with depth from a value of zero at the surface of the
slope. The seam thickness required to just affect stability was determined for various
depths of the seam. The effect of the siope angle on the seam thickness required to
affect stability was also investigated. Both circular and noncircular shear surfaces were
used. The effect of the assumed potential critical shear surface on the seam thickness
required to just affect stability and on the factor of safety is examined.
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3.7.1 Variables

The variables describing the slope geometry for Case 2 are shown again in
Figure 3.4 along with the variables which describe the shear strength. The shear
strength (cohesion) for the seam is assumed to be a constant. The cohesion of the
surrounding soil increases linearly with depth at the rate, ¢, from a value of zero at the
surface. The dimensionless variables t/H and d/H are again used. The ratio of the shear
strength of the seam to the shear strength of the soil immediately above the seam,

Coear (C.*d), is used as a dimensionless shear strength ratio.

3.7.2 Procedure for Detecting Stability with Thin, Weak Seam

For each slope the factor of safety without the seam was calculated first. Fora
linear increase in shear strength with depth from zero at the surface, the factor of safety

can be calculated from an infinite slope analysis and is expressed by

F= 2;*’ cosec(2B) | (4)

which indicates that F does not depend on the depth of the critical shear surface.
Equation 4 was used to calculate the factor of safety for the slope without a seam.

The critical potential shear surface for a homogeneous slope without a seam
tends to be very shallow and becomes téngem 1o the slope face, regardiess of the value
of ¢, provided the cohesion at the surface is zero. Unlike Case 1, where a weaker seam

in the slope will always affect stability because the critical shear surface passes through
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Figure 3.4 Slope and shear strength variables for Case 2 - cohesion increases linearly
with depth




the seam, it is possible in the second case that a seam of weaker material may exist, but
not effect the stability since the critical shear surface may be located much shallower.
Of interest in this investigation was the thickness of the seam required for the
factor of safety for the slope with the seam to be equal to the factor of safety for the
| homogeneous slope, without the seam, and for the critical shear surface to pass into the
seam. Analyses were performed using various depths to the seam, shear strength ratios,

slope angles and shapes for the critical shear surface.

3.7.3 Verification of Dimensionless Parameters

To confirm the uniqueness of a solution for a given set of dimensionless
parameters (/H, d/H, and ¢,.../(c.*d)) a series of slope stability calculations was
performed where values for individual components of the dimensionless variables were
changed. Values for the dimensionless parameters were kept constant while the
magnitude of the individual quantities were changed. The values for the variables H, v,
Crearm a0l ¢, were changed.

The results from the confirmation study are summarized in Table 3.2 The
dimensionless ratios d/H and Ceeany/(c.*d) were kept constant while the values of H, Ceeum,
and ¢, were varied. The effects of changing the values of the individual variables on the
seam thickness required to just affect stability were then determined for each
combination of values. The first set of values (first row) in Table 3.2 are the "base”
parameters used for further comparison described later. With this set of values the seam
thickness required to just effect stability is 0.28 fi aﬁd t/H is 0.007. The second set of
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. Table3.2
Results for verification of dimensionless parameters for Case 2 - cohesion increasing

linearly with depth
H | d|dH | Com| €| Cood ¥ t t/H Factor F/
ft | & psf I psfl (c,*d) | pef | fi of safety | (c.dyH)
40 1201 03 1100} 10} 0S5 100 1 0.28 | 0.007 0.400 8.00
1201601 05 13007 10| 05 100 | 0.85 | 0.007 0.400 8.00
40 1201 05 | 100 | 15 0.5 100 | 0.28 | 0.007 0,600 8.00
40 1201 05 [ 10010 035 30 10281 0.007 1.333 8.00
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values (second row in Table 3.2) illustrates the effect of increasing the slope height.
The third set of values illustrates the effect of changing the magnitude of the shear
strengths. The fourth and final set of values illustrates the effect of changing unit
weight. In all cases the required seam thickness expressed by the dimensionless ratio
t/H was unaffected by the changes in the values of the variables. As noted in Table 32,

the factor of safety for some cases is different. However, the dimensionless ratio

di o is the same for all sets of data. The results shown in Table 3.2 verify that the
€07

absolute value of slope height, shear strength, and unit weight do not effect the results

¢ .
2. remains constant,
<

for the critical seam thickness ratio, t/H, provided

z

3.7.4 Results

Slope stability calculations were performed for the second case using both

circular and noncircular shear surfaces. Results are presented separately below.

3.74.1 Circular Shear Surfaces

Figure 3.5 depicts combinations of d/H and t/H where the seam first begins to
influence stability. Results are shown for normalized shear strength ratios, Ceean/(c.*d),
equal to 1/2, 1/3, 1/5 and 1/10 . Al analyses were performed with circular shear
surfaces and a slope angle of 15 degrees.

Combinations of t/H and d/H, shown in Figure 3.5, which lie to the left and
above the curves correspond to cases where the critical shear surface will be in the seam
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Figure 3.5 Combinations of t/H and d/H where seam effects stability for Case 2 -
cohesion increases linearly with depth with B = 15 degrees
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and the factor of safety will be less than the factor of safety for a homogeneous slope
without the seam. For these conditions the seam will affect stability. Conversely,
combinations of the t/H and d/H which lie to the right of and below the curves represent
conditions where the critical shear surface lies above the seam and the factor of safety is
equal to the factor of safety for a homogeneous slope without the scam. For these
configurations the seam does not influence stability.

Figure 3.5 indicates that for a given value of Cyu/(c,*d), the seam thickness
required to influence stability increases as the depth of the seam increases. However,
for each Cuan/(c;*d), there exists a "transition” depth at which the seam will not
influence the stability regardless of the thickness of the seam. This transition depth is
represented by the vertical portions of the curves in Figure 3.5. This result is reasonable
considering the preference of the critical shear surface to be tangent to the face of the
slope. As the depth to the seam increases, the thickness of the seam must also increase
to draw the critical shear surface into the seam and eventually the seam reaches a depth
where regardless of the thickness of the seam the critical shear surface will not pass into
the seam. At very low values of d/H, the value of t/H approaches zero. No
dimensionless seam thickness less than t/H equal to 0.000023, (thickness of one one-
thousandths of a foot for a 40 feet high slope) was examined in this study.,

The effect of slope angle on the seam thickness required to affect stability is
shown in Figures 3.6 and 3.7 for c.an/(c.*d) equal to 1/2 and 1/3, respectively. Curves

are shown for slope angles of 15 degrees and 30 degrees. Again, for points which lie
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above and to the left of the curves, the critical shear surface will be in the seam and the
factor of safety will be less than the factor of safety for a2 homogeneous slope without
the seam. For these conditions, the seam will effect stability. Conversely, combinations
of t/H and d/H which lie to the right of and below a set of data represent conditions
where the factor of safety is not affected by the seam and the critical shear surface lies
above the seam, tangent to the slope face. For a given seam thickness, the depth to the

seam required to just effect stability is less for the 30 degree slope compared to the 15

dégree slope.

3.7.4.2 Noncircular Shear Surfaces

Computations also were performed using noncircular shear surfaces. Again, the
seamn thickness required to just effect stability was determined for various depths of the
seam.

The results for the seam thickness required to just affect stability determined
using both circular and noncircular shear surfaces are shown in Figure 3.8 with
Csean/(C:*d) equal to 1/3 and a slope angle of 30 degrees. Combinations of dimensionless
seam thickness (H)and seam depth (d/H) which plot to the left of and above the curves
in Figure 3.8 will affect stability and those to the right of and below will not affect
stability. The relationship between d/H and /H for the noncircular shear surface is
similar in shape to the relationship for circular shear surfaces; however, the curve for
noncircular shear surfaces lies to the right of the curve for circular shear surfaces. This

indicates that the thickness of the seam required to Just affect stability, for a given d/H,
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is smaller when noncircular shear surfaces are considered compared to circular shear
surfaces. This result is reasonable. A circular shear surface cannot pass through as
much of the seam as a noncircular shear surface due to constraints in geometry.

The results shown in Figure 3.8 suggest that there are three regions that can be
defined. The first region lies to the left and above the curve for the circular shear
surfaces. In this region the weaker seam will influence stability regardless of the shape
of the shear surface. The second region is the region between the two curves for the
circular and noncircular shear surfaces. In this region analyses assuming a circular
shear surface would indicate the seam does not affect stability while analyses assuming
a noncircular shear surface would indicate the seam does influence stability. The third
region lies below and to the right of the curve for the noncircular shear surface. In this
region the seam will not influence stability regardless of the assumed shape of the shear
surface.

It is possible that different values for the factor of safety may be calculated
depending on whether the shear surface is circular or noncircular. However, the results
shown in Figure 3.8 do not quantify thé difference between the factors of safety
calculated assixming a ctrcular and noncircular shear surface. To understand the impact
of the assumed shape of the shear surface on the factor of safety, comparisons were
made for slopes with identical geometry and material properties. A seam thickness was
selected which corresponds to the seam thickness required to just affect stability

assuming a circular shear surface for a given depth. The factors of safety for this
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geometry were calculated using circular and noncircular shear surfaces. Figure 3.9
compares the factor of safety calculated in this manner for a slope with a slope angle of
15 degrees, and Ciean/(c,*d) equal to one-half. The critical seam thickness required to
affect stability assuming a circular shear surface for each d/H is given on Figure 3.9,
The units on the abscissa are the dimensionless ratio d/H and the units on the ordinate

are the dimensionless ratio Froncireuad Feriticat<ireutar- FOr @ seam depth equal to 40 percent

of the slope height (d/H = 0.4) the factor of safety using a noncircular shear surface is
76 percent of the value obtained using a circular shear surface. However, at d/H equal
to 1 the factors of safety are more similar, with the factor of safety for a noncircular
shear surface being 94 percent of the value for a circular shear surface. The results
shown in Figure 3.9 indicate the shape of the shear surface is more important for

shallow seams compared to deeper seams.

3.8 Case 3 - Friction Angle is Constant

For the third case, the shear strengths were represented as entirely frictional (¢ =
0). The seam thickness required to just affect stability was determined for various
depths of the seam.. The effects of the slope angle and relative strength ratio
(tand’..m/tand'use) On the critical seam thickness was also investigated. Both circular

and noncircular shear surfaces were used in the analyses.
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3.8.1 Variables

The variables describing the slope geometry have previously been defined and
are shown again in Figure 3.10 along with the variables used to describe the shear
strength of the soil. The effective stress friction angles, ¢'scum and ¢'ope for the seam and
surrounding soil, respectively, are assumed to be a constant. The dimensionless
| variables /H and d/H are used to describe the geometry and the ratio, tang’ eam/tand’siope,

is used to describe the relative shear strengths.

3.8.2 Procedure for Detecting Stability with Thin, Weak Seam

For each combination of slope angle (B) and effective stress friction angle
{'s10pe), the factor of safety without the seam was calculated first. For this case of a
cohesionless soil, the factor of safety can be calculated from an infinite slope analysis
and 1s given by

_ tan¢’

F=
tan 8

&)

which indicates that F does not depend on the depthlof the critical shear surface. Asin
Case 2, the critical potential shear surface tends to be very shallow and becomes tangeﬁt
to the slope face. Because the critical shear surface is tangent to the face of the slope it
is possible that a seam of weaker material can exist but have no influence on stability,
Of interest in this investigation was the thickness of the seam required such that

the factor of safety for the slope with the seam is equal to the factor of safety for the
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Figure 3.10 Slope and shear strength variables for Case 3 - friction angle is constant
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homogeneous slope without the seam, and the potential shear surfaces is "captured” by
the seam. Analyses were performed using several depths for the seam, shear strength

ratios, slope angles and shapes for the critical potential shear surface.

3.8.3 Verification of Dimensionless Parameters

To validate the uniqueness of the dimensionless parameters used in the analyses,
a series of stability calculations was performed where values for individual terms in the
expression for the dimensionless variables were changed. The effects of the changes in
the values on the dimensionless thickness ratio (vVH), were investigated. Values for the
dimensionless parameters (d/H and tand'c./tand’s...) were kept constant while the
values of individual variables H, ¥, $'sope and ¢'s0ar, were changed.

Results from the verification study are summarized in Table 3.3 The
dimensionless ratios d/H and tang'sa/tand’ ;.. were kept constant while H, tand’...., and
tand',e. were varied. The effects of changing the individual variables on the seam
thickness required to just affect stability were then determined for each combination of
values, The first set of values (first row) in Table 3.3 represent the "base" parameters
used for comparison later. For this set of values the critical seam thickness is 0.38 ft |
corresponding to t/H of 0.0095. The second set of values (second row) in Table 3.3
examine the effect of slope height. The third set of values is used to examine the effect
of changing the shear strengths. The fourth and final set are used to explore the effect

of changing the unit weight of soil. In all cases the ratio t/H remained unaffected by the




Table 3.3

Results for verification of dimensionless parameters for Case 3 - friction angle is

constant
H | d|dH] ¢ ¢: | tand'eed/ | Y t YH | Factor F/
ft | f psf | psf | tand'yom | pef | # of safety | tand’. .
40 1201051611 30 0.5 100 | 0.38 1 0.010] 2.155 7.47
1201601 05 ] 16.1 | 30 0.5 100 | 1.14  0.010 | 2155 7.47
40 | 201 051266 | 45 0.5 100 [ 038 | 0010} 3.732 7.45
40 1201051161 30 0.5 30 103810010] 2155 7.47




changes. As noted in Table 3.3, the factor of safety for some cases is different.

However, the dimensionless ratio - , shown in the last column of Table 3.3, is

siope
the same for all sets of data. These results indicate that the absolute value of slope
height, shear strength, and unit weight do not effect the results for the critical seam

tan ' sesm

siope

thickness as long as remains constant.
3.8.4 Results

Slope stability calculations for the third, and final, case were also performed
using both circular and noncircular shear surfaces. Results are presented separately

below.

3.8.4.1 Circular Shear Surfaces

Figures 3.11 and 3.12 present curves showing combinations of t/H and d/H
where stability is first affected by the seam for slope angles of 15 and 30 degrees,
respectively. Curves are shown for values of tand'se.m/tand oo equal to 3/4, 1/2, and
1/3. Combinations of t/H and d/H, shown in Figures 3.11 and 3.12 which lie to the left
and above the curves correspond to cases where the critical shear surface will be in the
seam and the factor of safety will be less than the factor of safety for a homogeneous |
slope without the seam. For these conditions, the seam will influence stability.

Conversely, combinations of the t/H and d/H which lie to the right of the curves
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represent conditions where the cntical shear surface lies above the seam and the factor
of safety is not affected by the seam.

As for the previous case where the cohesion increased linearly with depth, the
thickness of the seam required to affect stability increases as the depth to the seam
increases. The results presented in Figures 3.11 and 3.12 indicate that for a given d/H,
the seam thickniess required to affect stability increases as tang'scun/tand' o Increases.
This result is reasonable considering that the critical shear surface will be tangent to the
face of the slope. As the contrast between the strength of the seam (§'se0) and the
strength of the surrounding soil (¢'0p.) gets smaller, the seam thickness at a given depth

will have to increase in order for the critical shear surface to pass into the seam.

3.8.4.2 Noncircular Shear Surfaces

Computations were also performed using noncircular shear surfaces and the
seam thickness required to just affect stability was determined for various depths of the
seam.

The results of computations with circular and noncircular shear surfaces are
compared in Figures 3.13, 3.14 and 3,15 for tand'seun/tand’' .. equal to 3/4, 1/2, and 1‘/3
respectively and a slope angle of 15 degrees. Again, stability will be affected by the
seam if ¢/H and &/H lic to the left and above the curves shown

In ail cases, the seam thickness required to just affect stability is less for

noncircular shear surfaces compared to circular shear surfaces. As in the previous case
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where undrained shear strength increased linearly with depth, there are three regions
where stability can be defined depending upon the shape of the shear surface. The first
region lies to the left and above the curve obtained for the circular shear surfaces. In
this region the seam will affect stability regardless of the shape of the shear surface.
The second region lies between the two curves obtained for circular and noncircular
shear surfaces. In this region analyses assuming a circular shear surface would indicate
the seam does not affect stability while analyses assuming a noncircular shear surface
would indicate the seam does influence stability. The third region lies below and to the
right of the curve for the noncircular shear surface and here the seam will not affect
stability regardless of the shape of the shear surface.

Figures 3.13, 3.14 and 3.15 indicate that for each value of tand's.m/tand',. the
seam thickness required to influence stability increases as the depth of the seam
increases, However for each tand'sm/tand’ . there exists a "transition" depth of seam
at which the seam will not influence stability regardiess of the thickness of the seam.
This transition depth is and is represented by the vertical portions of the curves in

Figures 3.13, 3.14, and 3.15.

3.9 Conclusions

A series of parametric studies was performed 1o examine the effects of
variability in shear strength in the vertical direction on stability. A thin seam of weak

matenial was used to represent the variability. Several simple variations in shear
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strength were examined and the effect of the depth to the seam, slope angle, ratio of
shear strength of the seam and slope, and the shape of the shear surface were examined.
Dimensionless variables were used to present the results. Several conclusions can be
drawn depending on how the shear strength is characterized.

The first case considered was for a purely cohesive (¢ = 0) soil with constant
strength. In this case a seam of weaker soil will affect stability regardless of the depth
of the seam. The results from the computations indicate that as the depth to the seam
increases the thickness of the seam required for the shear surface to become "captured”
by the seam decreases.

The second case also considered the shear strength to be purely cohesive (¢ =
0), but the cohesion increased hinearly with depth from a value of zero at the surface, It

was found that:

(1) the thickness of the seam required to affect stability increased as the depth
to the seam increased,

(2) the thickness of the seam required to affect stability for a given depth of
seam decreased as the contrast between the shear strengths of the seam and
the surrounding soil increased,

(3) the thickness of the seam required to affect stability for a given depth of

seam Increased as the slope angie increased,
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{4) a smatler seam thickness is required to affect stability for a given depth of
seam if noncircular shear surfaces are considered rather than circular shear
surfaces, and

(5) the shape of the shear surface influences the factor of safety more for
shallow seams than for deeper seams.

The third and final case considered was for a cohesionless (c' = Q) soil. The

results for this case were similar to those for Case 2 however, comparisons of the factor
of safety using circular and noncircular shear surfaces were not made as they were for

the case where cohesion increases linearly with depth.

For the two cases (Cases 2 and 3) where shear strength increases linearly with
depth it was shown that it is possible for seams of weak soil to exist and not have an
effect on stability. The thickness of the seam required to not influence stability depends
on the depth of the seam, the slope angle, the contrast in shear strength between the
seam and surrounding soil, and the shape of the shear surface. There also exists a
"threshold" depth where stability will not be affected by a seam regardless of the
thickness of the seam. The threshold dépth 1s a function of the slope angle, shape of the
assumed shear surface, and shear strength contrast between the seam and surrounding
soil. These two conclusions may be useful in probabilistic approaches that attempt to
define the effects of vertical variability of shear strength on slope stability. For

example, if the depth to the seam is uncertain but greater than the depth where it
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influences the factor of safety, uncertainty in the depth and thickness of the seam are not

Important.
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4. Variation of Back-Calculated Shear Strength and Slope Stability Assuming

Infinite Slope Conditions

4.1 Introduction

The effects of bathymetry on the variability of both back-calculated shear
strength and forecast stability are explored in this chapter for a submarine slope in
Pigmy Basin. Pigmy Basin, shown in Figure 4.1, is an intraglope basin located in the
Gulf of Mexico. Pigmy Basin is approximately 250 square kilometers in area and lies
beneath from 1500 meters to 2200 meters of water. Slope geometry was obtained from
bathymetric data. The bathymetric data were retrieved through a World Wide Web site
developed and maintained by Bryant et al. (1995). The bathymetric data at this Web
site are based on bathymetry information originally compiled by NOAA (1992).

Three slope profiles were selected and slope geometry was determined from the
bathymetry information. Both variability of shear strength through back analyses and
variation of slope stability through forward analyses were determined using the slope
profiles.

The vaniability of shear strength along the cross-section of each slope was
investigated first and was determined by back analyses using infinite slope procedures.
The factor of safety was assumed to be constant along the entire cross-section of the
slope and the shear strength parameter ¢' (effective stress friction angle) was back-

calculated.
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Figure 4.1 Bathymetry chart of Pigmy Basin in the Gulf of Mexico, with 50 meter
contours
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The variability in the factor of safety along slopes was also calculated using
infinite slope procedures. The effective stress friction angle (¢') was assumed to be
constant along the entire cross-section and the factor of safety was calculated. The soil
was assumed to have no cohesion and the shear strength was expressed 1n terms of an
effective stress friction angle ¢'. This characterization of shear strength is believed to be
representative of "drained" (long term) strength of many normally consolidated and

lightly over consolidated clays.

4‘.2 Description of Profiles in Pigmy Basin

The three slope profiles selected are identified in Figure 4.2 which shows Pigmy
basin in plan view. The latitude and longitude near the center of the slope are
approximately 27°14'N and 91°26'W respectively, Each of the three profiles covers a
distance of approximately 4000 meters parallel to the slope with a change in elevation of
760 meters. The water depths range from 2240 to 1480 meters. This area of Pigmy
basin was chosen because of the steep slopes and irregularity in the bathymetry. The
steepest portions of the slopes are approximately 25, 35, and 35 degrees for cross-
sections A-A, B-B, and C-C respectively. The average slope, represented by the slope
of a straight line drawn from the toe of the slope to the crest of the slope, is 11 degrees.

Topographic information was obtained by scaling the distances between 10
meter contour intervals on a figure similar to Figure 4.2, The scale of the figure used i

measure distances between contour intervals was 710 meters per inch. Scaling the
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Figure 4.2 Plan view of cross-sections A-A, B-B, and C-C in Pigmy Basin with 20
meter contours
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distances between contour intervals provided the horizontal distance relative to the
beginning of the cross-section and the elevation at points where each contour crossed the
line of the cross-section. The data points determined from scaling distances off the
contour plot were used to construct the three profiles shown in Figure 4.3. The simple
arithmetic average slope angle obtained by averaging the slope angles between each pair

of contour lines on the cross-section is 16 degrees.

4.3 Variability in Shear Strength from Back Analyses

Two-dimensional analyses were performed to back-calculate the variability of
shear strength for each of the three slope profiles. The soil was assumed to be
cohesionless (¢’ = 0}, and the effective stress friction angle &' was assumed to be
constant over cach linear segment, i.e. between points represented by the original
contours. The factor of safety was assumed to be unity everywhere along the slope. No
€XCEess pore water pressures were assumed, 1.¢. the soil was assumed to be fully

consolidated and drained during shear.

'The factor of safety was calculated assuming an infinite slope thus,

For (1)

where ¢' is the effective stress angle of internal friction and B is the slope angle
measured from the horizontal. Equation 1 was used to calculate ¢' for each segment of
the slope, assuming a factor of safety equal to one, Thus, the effective stress friction

angle was equal to the slope angle (¢' = B).
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The calculated shear strength along the slopes is shown in Figures 4.4, 4.5, and
4.6 for cross-sections A-A, B-B, and C-C respectively. Each figure indicates a large
variation in ¢' along the cross-section of the slope, particularly for cross-sections B-B

and C-C.

4.4 Variability in Stability from Forward Analyses

Stability analyses were also performed to calculate the factor of safety for the
three irregular slope profiles shown in Figure 4.3 using an assumed shear strength. The
s<;il was assumed to be cohesionless and ¢’ was assumed to be 16 degrees. This angle
(16 degrees) represents the approximate average slope angle calculated in the previous
analyses presented earlier in Figures 4.4, 4.5 and 4.6. This friction angle was chosen so
that the nominal average value for the factor of safety would be near unity. The
effective stress friction angle ¢' was assumed to be constant everywhere along the slope.
No excess pore water pressures were assumed. The factor of safety was calculated
using Equation 1. |

The variation of the factor of safety along the three slopes are shown in Figures
4.7, 4.8, and 4.9 for cross-sections A-A, B-B, and C-C respectively. Each figure
indicates a large vanation in the factor of safety along the slope, particularly for cross-

sections B-B and C-C.
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4.5 Conclusions

Some of the apparent variabulity in shear strength and stability along the slopes
may be artificial due to the assumptions used to perform the calculations, such as
assuming that the factor of safety (F) or effective stress friction angle (¢) were constant
along the entire slope. By assuming the values of F and ¢' are constant along the slope
the corresponding calculated variations in effective stress friction angle and factor of
safety, respectively, probably represent the maximum variation that might be expected
ti') occur. The variability in shear strength implied by the results shown in Figures 4.4,

4.5, and 4.6 is explored further in Chapter 5.
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5. Spatial Variability of Shear Strength in the Lateral Direction

5.1 Introduction

The calculations presented in Chapter 4 suggest that the shear strength may be
highly variable laterally along the slope profile. Actual measurements of shear strength
at various sites on land and offshore show that over a given distance shear strength can
vary either abruptly or gradually. If a single stratum of soil is considered, shear
strength measurements from samples taken a short distance apart in the horizontal
direction may tend to be similar in comparison to shear strength measurements at
distances further apart in the horizontal direction. Thus, two values for shear strength
would be expected to be highly correlated if the distance between the samples is small
while, shear strengths would be expected to be correlated less if the distance between the
samples is large. This change in correlation of shear strength measurements as the
horizontal distance between the measurements changes can be referred to as a
"eorrelation structure”. A correlation structure describes how a vanable, such as shear
strength, might be expected to change spatially or temporally.

A correlation structure for shear strength in the lateral direction is calculated in
this chapter using the cross-section designated C-C, presented in Chapter 4. Instead of
using direct measurements of shear strength at various locations along cross-section (-
C, shear strengths inferred from back analyses using slope stability are used. The

variation of shear strength for cross-section C-C was presented in Chapter 4, The

81




correlation structure for the shear strength in the lateral direction will be characterized

by a single statistical parameter called the "scale of fluctuation” (Vanmarcke, 1983).

5.2 The Scale of Fluctuation

The scale of fluctuation is a measure of the spatial or temporal interval over
which a variable is correlated. For the investigation in this chapter, the scale of
fluctuation can be defined as a measure of the distance over which the shear strength is
correlated. An example of a simple linear correlation structure is shown in Figure 5.1.
T"he correlation structure is defined by the series of points representing values for the
correlation coefficient p(t) at different lateral distances T. The correlation coefficient
for the correlation structure shown in Figure 5.1 starts at a value of one (perfectly
correlated), for a lateral distance of zero, and gradually decreases to a value of zero
(statistically independent )for lateral distances of 80 meters. In the context of this

chapter, the correlation structure can be used to describe the correlation coefficient p(t)

for shear strength between two samples separated by some lateral distance <.

5.3 Evaluation of the Scale of Fluctuation

The scale of fluctuation was calculated for the slope geometry and back-
calculated shear strengths determined in Chapter 4 for cross-section C-C. The scale of
fluctuation was determined by first calculating the correlation coefficients between pairs
of shear strengths separated by some distance, 1. The correlation coefficients can then

be used to define the correlation structure, Once the correlation structure is determined
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several different models for the scale of fluctuation can be fit to the results to establish
which model fits the data the best. Each of the models can be defined by a single
variable called the scale of fluctuation. The following sections define and describe,

using an example, the procedure used to determine the scale of fluctuation.

5.3.1 Correlation Coefficients

The mathematical expression used to calculate the correlation coefficients is
presented along with a formal explanation and several properties of correlation
c;)efﬁcients. An example is presented to show how the correlation coefficients are
calculated and the scale of fluctuation is evaluated. Finally, a brief description of a
computer program VARREDF, which was developed to calculate the correlation

coefficients, 1s presented.

3.3.1.1 Formal Description and Properties of the Correlation Coefficient

The correlation coefficient is calculated by
p(t) =————~ @)

where p(T) 1s the correlation coefficient, COV(X, Y), covanance between X and Y, and
oy and oy are the vanances of X and Y, respectively. For the case being investigated in
this chapter, COV(X, Y} is the variance between pairs of shear sirength separated by a
distance 1, and oxand oy are the variances of individual components of the pairs of

shear strengths.
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If the correlation coefficient between shear strength measurements separated by
some distance t is equal to unity (perfectly correlated), then the values for the shear
strength measurements are positively, linearly related. If the correlation cocfficient is
equal to zero then the values for the shear strength measurements are statistically
mdependent. If the correlation coefficient is equal to negative one then the values for the
shear strength measurements are negatively, linearly related. A property of the
correlation coefficient is that its value must lie between minus one and plus one. The
calculations of the variances necessary to solve for the correlation coefficients can be

determined for either discrete or continuous data.

5.3.1.2 Calculations for the Correlation Coefficient

The correlation coefficients were calculated using discrete values for distance
since the slope geometry was determined from bathymetry charts at discrete locations.
Recall that the method used to determine values from the bathymetry charts led to
irregularly spaced coordinates dictated by contour intervals. Only the points scaled
from the bathymetry charts were used for this investigation The values for the back-
calculated shear strengths, determined in Chapter 4 assuming infinite slope procedures,
are constant for each segment of the slope (see Figure 4.3). Since the shear strength for
cach segment is constant, the midpoint of each segment will be used to determine
distances. Figure 5.2 illustrates a simple example of a cross-section and shear strengths
associated with each point (midpoint) defining the cross-section. The points in Figure
5.2 represent the points scaled from the bathymetry charts. Straight lines are assumed
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between the scaled points. The lateral distance between successive midpoints and the
shear strength associated with each midpoint (interval) are shown on Figure 5.2. The
effective stress friction angle ¢' is set eq&al to the angle (B) of the segment containing
the midpoint (based on assuming infinite slope conditions and F = 1.0). Table 3.1 lists
the lateral coordinates of the midpoint of each segment and the associated effective
stress friction angle for the example slope shown in Figure 5.2.

The first step in calculating the correlation coefficients is to determine the
distance from each point to every other point. For the example set of data listed in
Table 5.1, the distance between the first point and the second is 16 meters, first and
third is 38 meters, first and fourth is 55 meters, first and fifth is 88 meters, second and
third is 22 meters and so on up to the fourth and fifth point (29 meters). Associated
with each distance between two points are two values for ¢', one at the left endpoint ¢/
and one at the right endpoint ¢'.. Next, cach pair of effective stress friction angles (',
and §') is "grouped” together with other pairs of effective stress friction angles
separated by similar distances. This grouping is necessary because of the discrete
nature of the data. The individual groups where data are to be placed are referred to as
*bins". For this example, five bins, each 20 meters wide, were chosen. The bin number
and the corresponding distances for the bin can be seen in the heading of Table 5.2, In
the first bin, pairs of effective stress friction angles corresponding o the distance
between the two endpoints which fall in the range from 0 to 20 meters are placed, in the

second bin, pairs of effective stress friction angles corresponding to the distance between
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Table 5.1
Example input of lateral coordinates and the corresponding shear strength

Lateral coordinate of midpoint Shear strength, ¢'
of each segment {degrees)
{meters)
6 i3
22 19
44 22
61 20
80 25

28



Table 5.2
Shear strength pairs put into bins corresponding to distances between lateral
coordinates

Bin | Bin 2 Bin 3 Bin 4 Bin 5

0-20 20-40 40-60 60-80 | 80-100
{meters) | (meters) | (meters) | (meters) | (meters)
13,19 13,22 3,20 19,25 13,25

22,20 | 19,22 | 22,25
19,20

20,25

ESY



two endpoints that fail in the range from 20 to 40 meters are placed, and so on. For the
example, the [ateral distance between the first and the second point was previously
determined to be 16 meters, thus, the respective shear strength parameters 13 and 19
degrees (&' and ¢',) are placed in the first bin (first row, first column) of Table 5.2. The
lateral distance between the first and the third point is 38 meters, thus, the respective
shear strength parameters 13 and 22 degrees are placed in the second bin (first row,
second column). The Iateral-dist&nce between the first and the fourth point is 55 meters,
thus, the respective shear strength parameters 13 and 20 degrees are placed in the third
bin (ﬁfst row, third column). This process is repeated for each combination of distances
between pairs of points. The results of "grouping” the data in bins are shown in Table
5.2, In the actual analyses several different sizes for the bins were analyzed.

Once the data are separated into the appropriate bins, the right hand side of
Equation 2 can be evaluated. The covariance of the pairs of shear strengths, COV($.,$:)

for all the data in each bin is calculated as follows

COV(s,.0,) = E(¢, x ¢, )~ E(,) < E(%,) 3)
where ¢;and ¢, the pairs of effective stress friction angles in the bin for the left and right
side of a segment, respectively, and the E(+} operator is the expected value or mean
value of the corresponding effective stress friction angles within the bin. For the
example probiem, Equation 3 is used to calculated COV($. ¢ for the second bin (20-40
meters). The four sets of data for the second bin {(from Table 5.2) are shown in Table

5.3. The product of ¢'; and ¢', is shown in the third column of Table 5.3. The last row
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Expected values of shear strength pairs for the second bin (20 m - 40 m)

Table 5.3

¢ ¢'r P *¢'f1
(degrees) | (degrees) (degrees”)
Pair | 13 22 286
Pair 2 i9 22 418
Pair 3 19 20 380
Pair 4 20 25 500
Expected Value 17.75 22.25 396
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of Table 5.3 shows the expected values (average) for ¢:, ¢, and the product of ¢ and ®;.
Using the expected values shown in the last row of Table 5.3, the covariance of the pairs
of shear strength values for the second bin can be calculated using Equation 3, i.e.
COV($.,41) = 396-(22.25%17.75) = 1.0625. The value for COV(4,,$y) is in "degrees
squared".

Next, the variance for the friction angles on the left side of the segments, ¢, in
the bin is calculated by
A
o = 2(6.-9) @

j=

the summation 1s evaluated for the "n" values of §; in the bin and&; |18 the average

friction angle on the left side of a segment within the bin, The variance of the friction
angle on the right side of the segments, ¢,, in the bin is calculated using Equation 4 and
replacing the "1" subscripts for the left end of a segment with "r" for the right end of a
segment. For the example problem, the standard deviations (square root of variance) of
¢y and ¢, in the second bin are 2.77 and 1.79 degrees, respectively.

Finally, the correlation coefficient for each bin is calculated using Equation 2
and the results from Equations 3 and 4 for each bin respectively. For the example
problem, the value for the correlation coefficient can now be determined for the second
bin using Equation 2, 1e. COV{$,, ¢} = 1.0625/(2.77 x 1.79) = .21 In the actual
analyses the correlation coefficient is calculated for each bin using a computer program

developed for this purpose. The computer program is described in the next section.
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5.3.1.3 Computer Program

‘The computer program, VARREDF, was written in the FORTRAN
programming language to do the calculations required to define the correlation
coefficient. A listing of the source code for VARREDF is presented in Appendix B and
a users guide is presented in Appendix C. The algorithm is similar to the procedure
described in the previous section to calculated the correlation coefficient for the example

problem,

The user defined input to VARREDF consists of pairs of lateral coordinates and
the corresponding shear strength parameter ¢'. In addition, the size and number of bins
are input by the user. The values for the correlation coefficient for each bin are then

computed and output.

5.3.2 Scale of Fluctuation Models

Once the correlation coefficient 1s determined there are several models which
can be fit to the results of the correlation coefficient to determine the scale of
fluctuation. Each model is a function of the scale of fluctuation. Several common
models for the correlation functions are (1) uniform, (2) triangular, (3} exponential, and
(4) Gaussian. The differences among these models for the correlation coefficient can be
seen in Figure 3.3. On the vertical axis is the correlation coefhicient p{t) and on the

horizontal axis is the normalized distance /6 where 1 is the lateral distance between
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points and 0 is the scale of fluctuation. The difference between the various correlation
models is negligible for values of 1/ greater than 2.5.

The distance t corresponding to each bin is the average length that the bin
extends, 1.¢. for the example problem the average length for the extent of the second bin
is 30 meters [(20 m + 40 m)/2]. The results for the correlation coefficient determined
for the second bin can be plotted on a figure similar to Figure 5.3 and the scale of
fluctuation can be evaluated. Recall that the value for the correlation coefficient for the
example problem is 0.21. The normalized distance /6 on Figure 5.3 corresponding to a
value of (.21 for the correlation coefficient is approximately 0.8 (using the triangular
model). Thus, the scale of fluctuation, (), using only information from the second bin,
can be calculated, i.e. 8 =30 m/ 8 = 37.5 m. In the actual analyses the values for the
correlation coefficients are determined for each bin and plotted on a figure similar to

Figure 5.3 where the scale of fluctuation can be evaluated.

5.3.3 Results

The size chosen for the bins influences the number of sets of shear strength data
within each bin. For example, if the bin size is as large as the length of the slope ther:r
only one bin will be used, Tbus, only one value can be calculated for the correlation
coefficient, making it difficult to define the scale of fluctuation. Conversely if the bins
are chosen to be too small, there will be a large number of empty or near empty bins

which may lead to statistically insignificant results. It is desirable to avoid choosing bin
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sizes that are either too large or too small. Several different bin sizes were tried and
eventually a bin size of 30 meters was chosen. For the data set used in these
calculations, a bin size of 30 meters led to approximately 50 sets of data per bin.

Seventy-two sets of lateral coordinates and shear strengths for cross-section C-
€ were used as input into VARREDF; these values were determined from the
calculations presented in Chapter 4. The calculated values for the correlation
coefficients are shown in Figure 5.4. The results indicate that as the distance between
two points on the slope increases the correlation between expected values for ¢
decreases. Also shown on Figure 5.4 is the number of pairs of data points used to
calculate the correlation coefficient within each "bin".

Several correlation models were fit to the correlation coefficient data. A
comparison of the correlation functions using a value for the scale of fluctuation of 275
meters is shown in Figure 5.5. It can be observed that the uniform correlation model
over-predicts the calculated values, especially at smaller lateral distances, and the
triangular and Gaussian correlation functions over predict the values at smaller
distances and under predict the correlation coefficients at larger distances, shown on
Figure 5.5. The exponential correlation functions appear to fit the data well. Thus, thé
exponential correlation model was chosen over the other models to be used to calculate
the scale of fluctuation. The correlation coefficient using an exponential correlation

function is expressed by
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where T is the distance between points.

Figure 5.6 shows the data for the correlation coefficients and the exponential
correlation function using values of 250, 323, and 400 meters for the scale of
fluctuation. The values of 250 and 400 meters represent upper and lower bound for the
scale of fluctuation and were chosen to represent the upper and lower bounds of the data
by examination, i.e. curves were fit by eye to represent the bounds. A value of 325
meters was chosen to represent scale of fluctuation and was determined as the average

of the upper and lower bounds.

5.3.4 Calculation of the Autocorrelation Distance

The autocorrelation distance, like the scale of fluctuation, can be a useful parameter for
describing the correlation structure for a variable using a single variable. The
autocorrelation distance 1s defined as the distance at which the correlation coefficient is
equal to 1/e, where ¢ is the base of the natural loganthm. Figure 5._7 shows the
correlation structure developed using the exponential correlation model and values of -
250 and 400 meters for the sﬁale of fluctuation. A horizontal hne located at p(t) equal
to I/e is shown on Figure 3.7, The distance, 1, where the p(t} is equal 1o e, represents
the autocorrelation distance for the particular value for the scale of fluctuation
(Vanmarcke, 1983). The autocorrelation distances for the scale of fluctuation equal to
250 and 400 meters are 125 and 200 meters, respectively (Figure 53.7).
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The values calculated for the autocorrelation distances for effective stress
friction angles in the lateral direction (125 and 200 meters) are significantly larger than
the values reported in Chapter 2 for shear strength in the lateral direction (14 to 38
meters). The primary reason for the differences between the values of the
autocorrelation distances calculated in this chapter and those reported in Chapter 2 is
-Iikeiy due to the differences in the scale of the measurements used to determine the
autocorrelation distances. The values for autocorrelation distances for shear strength
r¢ported in Chapter 2 were determined from measurements using cone penetration
devices. Each shear strength measurement is taken at a "point” in the soil, i.e. shear
strength is measured over a volume of soil on the order of a few cubic centimeters. The
values for the autocorrelation distances calculated in this chapter were determined using
inferred shear strengths, not at points, but over the large lateral distance of the segments
between contour lines. Recall that the slope angle and shear strength were assumed
constant for each segment. Thus, each shear strength used in these computations is

inferred over a volume of soil on the order of 10's to 100's of cubic meters.

5.4 Propagation of Errors Associated in Calculating the Scale of Fluctuation

In the following sections, the effects of propagation of errors in determining the
slope profile from the bathymetry charts on the expected value and uncertainty of the
scale of fluctuation are investigated. Several potential sources of error are discussed.
The propagation of error was determined using a senies of Monte Carlo simulations and
the results are presented in a following section.
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5.4.1 Sources of Error

There are a variety of potential sources of error associated with evaluation of
the scale of fluctuation. These sources may come from: (1) the method used to measure
the bathymetry information, as discussed in Chapter 2, (2) scaling the bathymetry
measurements from the contour plots, and (3) the assumption that the factor of safety
for the slope is equal to unity along the entire length of the slope in order to back-
calculate values for ¢'.

Each of these errors would be expected to have an influence on the uncertainty
of the value of the scale of fluctuation calculated in the previous section. Of all the
potential sources of error discussed, the error assoctated with scaling the dimensions
from bathymetry charts was chosen in part due to the ease in which the propagation of
error may be represented and modeled. The error associated with scaling the dimensions
from the bathymetry charts to obtain slope geometry for cross-section C-C will be
investigated in the following sections.

A scale with 60 divisions per inch was used to measure the horizontal distances
between the contour intervals. Interpolation beyond this scale was done to one half of -
one division i.e. 1/120 inch. The error associated in measuring the data was assumed to
be normally distributed and independent between measurements with a mean of zero and
a standard deviation of 1/4 of & division, N{0, (.25}, The errors were assumed
independent between measurements because it was felt that errors in the measurements

were random and not systematic  Monte Carlo simulations were used to model the error
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in order to understand how the mean and variance for the distribution of the scale of
fluctuation is affected. Numerical methods, as opposed to analytical methods, were
used to estimate the mean and variance since the actual distribution of the slope

geometry is unknown.

54.2 Monte Carlo Simulation

The uncertainty in the results determined from the simulations is related to the
number of Monte Carlo simulations performed. If a large number of simulations is
p‘erformed, there will be a smaller amount of uncertainty in the resuits compared to
results determined using a smaller number of simulations. Thus, with each additional
simulation performed the confidence in the results increases.

The number of Monte Carlo simulations performed for this investigation was
chosen based on the information that was needed to understand how the propagation of
error in the measurements affects the response of the mean and the variance for the scale
of fluctuation. In addition, a practical limit to the number of simulations was set since
the process used to determine a value (or range in values) for the scale of fluctuation for
‘each simulation was not automated. The number of simulations was chosen to be 80. -
This number of simulations (80) corresponds to an error of +4 percent in the mean, for a
coefficient of variation of 0.2 and error of 31 percent in the variance with 95 percent
confidence bounds.

To model the uncertainty in the measurement of horizontal distances between
contour intervals, a series of uniformly distributed random variables was transformed

104



into an associated change in ihe length for a single measurement. Thus, if the measured
horizontal distance between two successive contour intew;ﬂs was 21 divisions and the
normally distributed random error, N(0,0.25), associated with that measurement is
0.125 divisions, then the new horizontal distance between the points becomes 21.125
divisions (21+0.125). This procedure was done for cross-section C-C using an
independent normally distributed random error for each segment of the slope. These
new horizontal distances for each segment of the slope result in new slope angles for
each segment and, hence, a new value for the back-calculated effective stress friction
angle (assuming infinite slope procedures and F = 1.0). New horizontal coordinates and
the associated shear strength parameter ¢' were determined for each simulation and the
correlation coefficients were levaiuated using VARREDF allowing the scale of
fluctuation to be evaluated. The entire process of developing new horizontal coordinates
and associated effective stress friction angles, calculating the correlation coefficients,
and determining the scale of fluctuation was repeated 80 times.

The process of converting uniformiy distributed random variables between the
range of 0 and 1 to normally distributed variables with the desired mean 1 and standard
deviation &, N(u, o) is given in detail by Ang and Tang (1990). A rough outline of thé
procedure follows. First, a uniformly distributed random variable between zero and one
is generated. Next, the inverse of the cumulative distribution function for the normal |
distribution is evaluated using the random number. The result is a normally distributed

number with a mean of zero and standard deviation of one, N(0, 1),. Next, this number,
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N(0, 1), is transformed to the desired normaily distributed parameter N(u, o) by
multiplying the number by the desired standard deviation and adding the desired mean.
The result is a series of normally distributed errors Ny, 0). The following example
illustrates this process.

Consider a measured segment length of 21 divisions and an assumed normatly
distributed error with a mean of zero divisions and standard deviation of 0.25 divisions.
Furthermore assume a uniformly distributed random number equal to 0.6915 is
generated. The inverse cumulative distribution function evaluated at 0.6915 can be
determined using a standard normal probability table and is equal to 0.5, This value,
0.5, is converted to the desired distribution by multiplying by 0.25 divisions (the desired
standard deviation) and adding zero divisions (the desired mean), i.e. 0.25%(03)+0=
0.125 divisions. This result is then added to the original measured length, i.e. 21 +
0.125 = 21.123 divisions, which reflects the new segment length incorporating the

potential error in the original measurement.

5.4.3 Results

For each simulation, the scale of fluctuation was determined by taking the
average of the upper and lower bounds for the scale of fluctuation as previously
described in Section 5.3.3. Table 5.4 indicates the frequency distribution for the
difference between the upper and lower bounds of the scale of fluctuation for cach of the

80 simulations. The results indicate that four of the simulations vielded a range for the
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. Table 5.4
Frequency distribution for the difference between the maximum and the minimum value
of the scale of fluctuation for each of the 80 simulations

Difference between upper and lower Frequency
bounds for the scale of fluctuation
< 100 4
100 - 150 13
150 - 200 22
200- 250 24
250 - 300 12
> 350 5
total 30
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scale of fluctuation less than 100 meters and five simulations gave ranges greater than
350 meters. The frequency distribution for the average scale of fluctuation determined
for each of the 80 simulations is shown in Figure 5.8. The distribution shown in Figure
3.8 indicates the new distribution for the scale of fluctuation based on the normally
distributed error, N(0, 0.25), associated with the measurement of the horizontal
distances from the bathvmetry data. The expected value for the scale of fluctuation of
this new distribution is equal to 297 meters with a standard deviation of 36 meters.
These new statistics indicate that the propagation of error from measuring the
bathymetry lowered the expected value of the scale of fluctuation from 325 to 267
meters and increased the uncertainty in the value of the scale of fluctuation as shown by
the range in values for the scale of fluctuation shown in F igure 5.8. The decrease in the
value for the scale of fluctuation was expected since the errors in the measurements
were assumed to be independent. By adding an independent random error to the
measured distances, the values for the correlation coefficients defining the correlation
structure will decrease in value, i.¢. the scale of fluctuation will decrease. The increase
in uncertainty in the value for the standard deviation was expected since the errors
modeled in the Monte Carlo simulations were assumed to be independent between
measurements.

As stated previously, the error in the mean vaiue of scale of fluctuation was
determined to be +10 percent for 80 simulations and assuming a value for the coefficient

of variation (8) of 0.20. A value for the coefficient of variation had to be assumed since

108




20

15 +
- -
[+
5
3106 +
&
L
™
=3 — —
5_,
O’LJIJI;.:‘:;;e;;',:D;[]
g"%g“zg'ﬁﬁ*ﬁg”@gﬁaﬂ,ﬁ"}
o3 £ e
Nmmmwgmmmﬂjmxm@mg
[} [} (o0 o4 oy o (321 (38}

Scale of Fluctuation (meters)
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the mean and standard deviation of the distribution was not yet known. Based on the
outcome of the 80 simulations the coefficient of variation & was equal to 0.12. This
value is lower than the value (0.20) used to estimate the error in the mean value of scale
of fluctuation. Thus, the error in the mean value of scale of fluctuation using the more
accurate value of § equal to 0.12 (instead of 0.20) and 80 simulations becomes +3
percent as opposed to the =4 percent originally calculated. The error in the variance of

the scale of fluctuation is not dependent on the coefficient of variation.

5.5 Conclusion

The scale of fluctuation (8) in the lateral direction for the shear strength of soil
was calculated for a slope cross-section in Pigmy Basin of the Gulf of Mexico. The
shear strength was back-calculated from slope angles assuming the cohesion (¢) was
zero and the friction angle (§) was equal to the slope angle. Thus, the scale of
fluctuation which was calculated for the shear strength is the same as the scale of
fluctuation for the slope angle.

A value for the scale of fluctuation of 325 meters was determined by fitting an
exponential correlation function to the values for correlation coefficients. The
correlation coefficients were determined using a computer program (VARREDF)
written specifically for this purpose. The program accepts as input the fateral
coordinates and corresponding values for the friction angle. Values for the

autocorrelation distance of 125 meters and 200 meters were determined using values of
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250 and 400 meters for the scale of fluctuation, respectively. The calculated value for
the scale of fluctuation and the autocorrelation distances may be large due to the course
resolution of the bathymetric data used in the analyses. Higher resolution bathymetric
data may lead to lower values calculated for the scale of fluctuation and autocorrelation
distances.

The effect from the error in the measurements, used to determine slope geometry
from bathymetry charts, on the expected value for the scale of fluctuation was evaluated
using Monte Carlo simulations. The results indicate that the error caused a decrease in
the expected value of the scale of fluctuation and an increase in the uncertainty of the
scale of fluctuation.

The method presented to calculated the scale of fluctuation in this chapter has
inherent problems. The method requires that the data be placed in discrete groups or
“bins" as opposed to analyzing the data in it's original and continuocus form. The effect
from forcing the data into bins may influence the value calculated for the scale of
fluctuation. An additional problem lies in the fact that the confidence in the calculated
value for the scale of fluctuation can not be quantified using the method of analyses
described in this chapter. A method used to calculate the scale of fluctuation which

overcomes these problems has been suggested by Gilbert and McGrath (in press).




6. Characterizing Stability along the Length of an Irregular Slope

6.1 Introduction

In Chapter 4, slope stability was computed along three cross-sections using
“infinite slope” analyses. In this chapter results of slope stability computations using
Spencer’s procedure of slices and more general-shaped shear surfaces than those of the
infinite slope are presented. All of the computations presented in this chapter are fora
single cross-section, section C-C.

At the outset of this study it was thought that infinite slope procedures could be
used to characterize the stability along the length of the cross-section provided that the
soil was cohesionless (¢ = 0). This was expected because slopes offshore are typically
of large lateral extent. For slopes of great lateral extent and cohesionless soil, the
critical potential shear surface should be a shallow plane parallel to the face of the
slope. This, however, was discovered to not be the case for slopes like the ones
examined in Pigmy Basin. Thus, the infinite slope procedure used in Chapter 4 to
calculate the variability in stability along the slope profiles may not produce the
minimum factor of safety for some points on the slope profiles.

In order to access stability along the length of a slope, a new procedure was
developed to characterize the minimum factor of safety along an irregular slope and
represent the factor of safety as a function of position, The new procedure and results

are presented in this chapter. The procedure used to determine the variation in factor of
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safety along a slope is different for soils with no cohesion and soils exhibiting at least
some cohesion. The procedures for these two cases (¢ = 0; ¢ > 0) are presented in

separate sections.

6.2 Slope Stability

Spencer's (1967) limit equilibrium procedure of slices was used to perform all
the calculations presented in this chapter. Buoyant unit weights were used to account
for submergence. The buoyant unit weight was assumed to be 4.72 kN/m® based on
several density measurements taken from samples retrieved from drop cores at

approximately four meters below the mud line near the location of cross-section C-C.

The density profiles are shown in Figure 6.1.

6.3 Cross-Section C-C
Figure 6.2 shows cross-section C-C in Pigmy basin. The dashed extensions on
either end of the slope were added to represent a horizontal ground surface so stability

analyses could be performed near the ends of the slope.

6.4 Searching Method Restricting Lateral Coordinate of the Center of the Circle’
A special search method that restricts the lateral coordinate of the center of the

circular shear surface was used to determine stability along cross-section C-C. The

search was conducted by varying the radius of the circular shear surface and varving the

vertical location of the center of the circular shear surface for a given lateral coordinate.
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An example of this search scheme is shown in Figure 6.3. The vertical line represents
the lateral coordinate where the center of the circles are located. The points labeled "A",
"B", and "C" illustrate three different vertical positions for the centers of circles. An
example of two different radii for a given center point is also shown in Figure 6.3 for the
center located at point A. Once stability calculations have been performed by varying
the radius at point A, the process of varying the radius is repeated at point B, then at
point C. 'I'he-search is then repeated for other lateral positions of the center points.
From the results of such calculations, the minimum factor of safety can be determined
for each lateral coordinate. A special version of the computer program UTEXAS3

(Wright, 1991), modified to "search” in the manner described, was used for this

purpose,

6.4.1 Description of Search Method

Stability calculations were perfbrmed for cross-section C-C using the procedure
described above. Centers were spaced at 152.4 meter intervals along the 3810 meters of
slope profile. Twenty-six lateral positions for center points were examined (Figure 6.4).

For each lateral position of the center point, the vertical location of the center
was varied in prescribed increments between two selected limits. The lower limit for the
vertical position of the center was selected to be five meters 2bove the surface of the
slope. The upper limit was selected to be approximately 15,000 meters above the
surface of the slope, which was well above the maximum vertical Iocation of any of the
crtical circles found. Initially, the increment for locating center points between these
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two limits was set to 300 meters. After examining results from the stability calculations
for each particular lateral coordinate, the upper and lower limits were moved closer
together to reflect the vertical region where the factor of safety was smallest. The
increment was then reduced and the search repeated. A final value of 10 meters was
used for the vertical spacing between center points of the circle.

At each vertical location for the center of the circles, the radius of the circles
was varied between prescribed limits. The minimum radius for a given center point was
equal to the minimum distance between the center point and some point on the face of
the slope, i.e. the smallest radius for a circle to intercept the slope. The maximum
radius was defined as the distance from the center to a set of line segments parallel to
the face of the slope at a prescribed depth below the surface of the slope. The distance
below the surface of the slope to the line segments used to determine the maximum
radius was initially set to 1000 meters; however, after viewing results from the first few
sets of analyses a value of 500 meters was determined to be sufficiently deep. The
radius of the circular shear surface was varied between the minimum and maximum
values i 20 equal increments. Once the factors of safety were evaluated for the 21
radii, the radii in the vicinity of the lowest factors of safety were successively reduced
until the increment between successive radii was less than or equal to 0.3 meters. The
process of subdividing the increments of radii around the "local” minimum is shown in
Figure 6.5: Factors of safety for five initial radii are shown by the solid squares. The

lowest initial factor of safety is 1.90 and occurs for a radius of 140 meters. The open

119




- initial increment

!
E
J - - & - -reduced increment

Factor of Safety
33

b
O

ot
-1

1.5 |
100 120 140 160 180

Radius (meters)

Figure 6.5 Example of subdividing radius around local minimum factor of safety

120




circles in Figure 6.5 illustrate the factors of safety calculated by subdividing the radii
between 120 and 160 meters using increments of four meters. A new minimum factor of
safety of 1.80 is then determined at a radius of 148 meters. In the actual analyses the
radii in the location of the local minimum were even further subdivided until the

increments in radii were no larger than 0.3 meters.

6.4.2 Results for Searching Method Restricting Lateral Coordinate of the Center
of the Circle

The first set of computations for the slope was performed assuming an effective
stress friction angle, ¢' equal to 16 degrees and no cohesion. The computed variation in
factor of safety along the slope is shown in Figure 6.6, Also shown in Figure 6.6 are the
factors of safety from the infinite slope analyses presented earlier in Chapter 4. As seen
in Figure 6.6, the factor of safety along the slope using circular shear surfaces is
constant (F=0.41) between the toe of the slope and a point approximately 2600 meters
up from the toe. This large range over which the factor of safety was constant seemed
unrealistic,

Further examination of the results of the analyses summarized in Figure 6.6
revealed that the cnitical circles with centers located between the toe of the slope and the
point 2600 meters from the toe were all essentially the same circle. The critical circles
all intersected the irreguiar slope near a point located approximately 2600 meters from
the toe. This effect is illustrated for several typical center point locations in Figure 6.7.
Each critical circle shown is located at approximately the same region of the slope
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regardless of the location of the center, and all produce essentially the same value for the
factor of safety (0.41). All of the circles are relatively shallow and are located at a
portion of the slope inclined at approximately 35 degrees. The value of 0.41 for the
factor of safety corresponds closely to the value for an infinite slope inclined at 35
degrees, i.e. F = tand'/ tanf. = tanl6® / tan35°.

As the centers of circles move to locations further than 2600 meters from the toe
of the slope the factors of safety shown in Figure 6.6 increase. This is because there is
no segment of slope beyond 2600 meters from the toe that is as steep as 35 degrees,
Also, it 1s generally not possible geometrically for a circle to lie entirely down-slope
from the center. Because of this geometric constraint the search method described in
Section 6.4 will usually find the critical shear surfaces at the steepest portion of the
slope at or up-siope from the center point.

The analyses presented above reveal that while the center of a critical circle may
be fixed in the lateral direction the shear surfaces are not necessarily located at or near
the center in the lateral direction. Thus, the search method and scheme for calculating
factors of safety does not characterize the variation in stability with position along the
length of the slope in a very meaningful way, rather it finds the portion of the slope with

the lowest factor of safety at or uphill from the point of interest.
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6.5 Searching Method with Shear Surface Restricted to Pass Beneath the Center
Point

To better characterize the variation of stability along the length of the slope, an
alternative method was developed. The alternative method is identical to the method |
descnbed previously above except the shear surface was restricted to pass beneath the
center point. Any circles which did not meet this criteria were rejected. Examples of
conditions which may lead to the rejection and acceptance of a circle are shown in
Figure 6.8. Of the two circular shear surfaces shown in Figure 6.8 only the shear
surface represented by the solid line is accepted.

Stability analyses were performed on cross-section C-C using the modified
search method described above. Except for rejecting circles that did not pass beneath
the center point, the search scheme and parameters used were identical to the ones used
previously. UTEXAS3 (Wright, 1991) was further revised to automate the modified
searching process.

The variation of stability along cross-section C-C was determined using the
revised search method. Calculations were performed and results are presented for two
different shear strength characterizations: (1) a cohesionless (¢' = 0} soil, and (2) a soil

with both ¢ohesion and friction.
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6.5.1 Cohesionless Seil

For the cohesionless soil, the véiue for the effective stress friction angle was
assumed to be 16 degrees. Results for the revised search scheme are summarized in
Figure 6.9 along with results obtained previously using infinite slope procedures and the
earlier search scheme where circles were not required to pass beneath the center point.
The variation in the factor of safety along the length of the slope is smoother for the new
search scheme where the shear surface is restricted to pass beneath the center point.
The factors of safety calculated using circular shear surfaces with the revised search
scheme was lower than the factors of safety calculated for an infinite slope, except for
three points located at horizontal distances of 1219, 2591, and 3658 meters from the toe
of the slope. The stability calculations performed using circular shear surfaces did not
produce factors of safety as low as those from the infinite slope analyses due to a
geometrical constraint: For a circular shear surface which passes vertically beneath the
center point, the minimum angle (8) subtended by the circle must be twice the slope
angle (B) as shown in Figure 6.10. The minimum possible subtended angle occurs when
the shear surface exits just below the center point. As illustrated in Figure 6.11 the .
depth (d) of the circle can be reiated to the radius (R) and the subtended angle (8) by,

ey T (6] J
de-—Rws;\g} :R{'%ms\\gjj (1)

Also, the length (/) of the circular shear surface can be related t¢ the radius and the

subtended angle by,
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restricted shear surface extent for cross-section C-C assuming cohesionless soil
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Figure 6.10 Relationship between subtended angle (8) and the slope angle (8)



Figure 6.11 Relationship between subtended angle (8), the slope angle (B), and the
relative slide depth d//
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Thus, the ratio of the depth of the circle to the length of the circle along the slope is,

t-cof 3
d o8 3

T ©)
! 2 sin[-g)
or,
d_1-cos(p)
1™ 2ein(p) @

Equation 4 expresses the minimum slide depth to length ratio of a circular shear surface
that exits at a point vertically beneath the center point.

For some slopes and, especially steep slopes, it is not possible for circular shear
surfaces to exit at the center point and a;t the same time correspond to very shallow
shdes. Thus, such circles may not produce the minimum factor of safety, especially for
cohesionless soils. An example of this is shown in Figure 6.12 for a 30 degree slope
where the minimum factor of safety occurs at point P on the slope. The minimum depth
to length ratio for a circle that exits at point P and whose center is above point P is |
approximately 13 percent for this 30 degree slope. An example of such a circle is
shown in Figure 6.17 labeled "A". In contrast, another circle such as the one labeled
"B" can exit at point P and have a much shallower depth to length ratio. The length to

depth ratio for Circle B is approximately six percent. If the soil in the slope is
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Figure 6.12 Comparison of circle crossing beneath center with circle not passing
beneath center
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cohestonless, Circle B will produce a lower factor of safety. Figure 6.13 shows how the
depth to length ratio effects the factor of safety for slope angles of 15 and 30 degrees
and cohestonless soil with effective stress friction angles equal to 15 and 30 degrees,
respectively. For an infinite slope analysis these two slopes will have factors of safety
equal to unity. The large, solid symbols shown in Figure 6.13 represent the points
where the exit point of the circle lies vertically beneath the center point of the circle,
Depth to length ratios lying to the left of the points represented by the solid symbols
represent conditions where the circles exit up-slope from the center point; depth to
length ratios lying to the right of the solid symbols represent conditions where the circle
exits down-slope from the center point. From the results presented in Figure 6.13 the
factors of safety can be determined, for a slope of cohesionless soil with a slope angle
and effective stress friction angle of 30 degrees and a depth to length ratios of 13
percent (Circle A in Figure 6.12) and six percent (Circle B in Figure 6.12) to be 1.15
and 1.03, respectively. These calculations show that restricting the circle to pass
beneath the center point increases the depth to length ratio of the circle which increases
the calculated factor of safety for a circular shear surface in a cohesionless soil.

To eliminate the problem described, the minimum factor of safety can be taken
as the minimum factor of safety from either an mfinite slope analysis or from the search
with circular shear surfaces restricted to pass vertically beneath the center point. The

factors of safety determined in this manner are shown in Figure 6.14.
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6.5.2 Cohesive and Frictional Seil

Additional stability computations were performed for the same slope,
represented by cross-section C-C, except the soil was assumed to have both cohesion
and friction. A friction angle of 16 degrees was assumed. The cohesion was chosen
such that the contrnibution of the cohes iqn was neither dominant nor negligible relative to
the contribution (large or small) of friction. For large values of cohesion, the fraction of
the shear strength attributed to cohesion becomes dominant and the critical circle tends
to go deeper into the slope and is of greater lateral extent. In such cases, effects of an
irregular slope profile on the factor of safety become much smaller. On the other hand,
if the cohesion is small, the friction becomes dominant and the critical circular shear
surface tends to become very shallow as already shown for a cohesionless soil in the
previous section, Based on these considerations, a value of 14.4 kPa was chosen for
cohesion. The cohesion, like the fniction angle, was assumed constant both laterally and
vertically in the entire slope.

With cohesion included the critical shear surface passes 1o at least some depth
such that "end effects” become important. Thus, infinite slope procedures generally do
not apply when cohesion is present unless a much firmer strata exists at a relatively
shallow depth compared to the length of the shear surface. Since it was assumed that no
firmer strata exists, infinite slope analyses were not performed for the slope containing

cohesion.
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Circular shear surfaces with the shear surface restricted to pass beneath the
center point were used to compute stability along a portion of the length of slope defined
by the cross-section C-C. Only about 1500 meters of the slope near the steeper
segments was analyzed. The results are shown in Figure 6.15
Figure 6.16 shows the effects of cohesion on the variation in the factor of safety along
the slope profile. Figure 6.16 compare the factors of safety shown in Figures 6.14 and
6.15 for no cohesion and a soil with cohesion and friction, respectively. In order to
more closely compare the results for the two shear strength characterizations (¢’ = 0; ¢'
> 0} the factors of safety were normalized by dividing the values by the respective
maximum values calculated along the cross-section (between 1800 and 3200 meters).
The results shown in Figure 6.16 indicate that adding cohesion to the soil smoothes and

dampens the variation in the factor of safety along this irreguliar slope.

6.6 Conclusion

The variation in stability along the length of a slope was examined using
circular shear surfaces and results were compared with results previously determined
using infinite slope procedures. The calculations showed that for cohesionless siopesl
factors of safety were lower using circular shear surfaces than the factors of safety
calculated using infinite slope procedures because of the contributions of adjacent,
steeper segments of the slope to the stability.

Several schemes were examined for calculating stability as a function of
position along the length of the rrregular slope. It was found that an appropriate way to
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compute the factor of safety at points along the slope was to require that the shear
surface pass beneath the center point of the circle and then vary the lateral position of
the center. In a few cases infinite slope analyses give lower factors of safety due to
limitations caused by requiring the circle to pass vertically beneath the center point. In
such cases and at such points along the slope the lower factor of safety from infinite
slope analyses is used.

The effect of cohesion was also investigated. It was found that the variation in
the factor of safety was smaller if the soil contained both cohesion and friction as

compared to a cohesionless soil for the trregular slope analyzed in this chapter.
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7. Summary, Conclusions, and Recommendations for Future Work

7.1 Summary and Conclusions

The purpose of this thesis was fo investigate slope stability and shear strength in
deep water. Work in this thesis was broken up into computational investigations of
simple, hypothetical slopes and stratigraphies, and more complex, irregular slopes based
on actual bathymetry from offshore surveys.

In Chapter 3, results of parametric studies were presented to quantify and show
the effect of variability of shear strength in the vertical direction on slope stability. In
particular, the effects on slope stability from the depth, thickness, and shear strength of
a thin weak seam of soil were determined. Results showed;

1. variability of shear strength in the vertical direction will effect the location of

a potential shear surface,

2. for slopes where shear strength increases with depth and a given seam
strength, there exists a depth for which the seam, regardless of its thickness
will not affect slope stability, and

3. when seams do exist the difference between the factors of safety calculated
using noncircular shear surfaces and circular shear surfaces may be
sigmficant.

It was also shown that for soils where strength mcereased with depth, the thickness of the

seam required to "capture” the shear surface (shear surface located in the seam)
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increased as the depth to the seam increased. However, for a soil where shear strength
is not a function of depth, the thickness of the seam required for the shear surface to be
"captured” by the seam decreased as the depth to the scam increased.

In Chapter 4, the variation of stability and shear strength was examined along
three slope cross-sections using bathymetry data from Pigmy Basin located in the Gulf
of Mexico. Large variations in stability along the cross-sections were found when
infinite slope analyses and cohesionless soil were assumed. Similarly, large variations
in shear strength along the cross-sections were back~calculated using infinite slope
analyses and assuming a constant factor of safety. The vanations in stability and shear
strength shown in Chapter 4 may represent the maximum variability of stability and
shear strength since the computations used to determine this variability were performed
assuming the values of the effective stress friction angle and the factor of safety,
respectively, were held constant along the slope.

In Chapter 5 the correlation structure of shear strength in the lateral direction
was inferred using results obtamed in Chapter 4 for the variation of shear strength along
the slope. Also, it was shown that the effect from the uncertainty in the measurements
used to infer the correlation structure from the bathymetry data on the scale of
fluctuation was to decrease the méan value for the scale of fluctuation and increase the
uncertainty of the calculated value for the scale of fluctuation. The resolution of the
bathymetry data, used to back-calculate shear strength which in rurn was used to

determine the antocorrelation distance, was on the same order of magnitude as the
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values calculated for the autocorrelation distance. Thus, it is possible that an
autocorrelation distance lower in value than the value determined in Chapter 5 could be
calculated if the resolution of the bathymetry data had been greater.

In Chapter 6 the variation in stability along a cross-section was evaluated using
method of slices procedures and circular shear surfaces. Several searching methods
were tried for locating critical circles having the minimum factor of safety before a
suitable method to compute and represent the minimum factor of safety spatially along a
slope was found. It was shown in Chapter 6, that for a cohesionless soil, it is possible
to calculate factors of safety using method of slices procedures and circular shear
surfaces which are lower than the factors of safety calculated using infinite slope
procedures for the same region of an irregular slope. Also, it was shown that the

variation in stability along the slope becomes less irregular if the soil has some cohesion.

7.2 Recommendations for Future Work

Based on the work presented in this thesis several recommendations for future
work can be made. As described in Chapter 2, there is significant uncertainty in
bathymetry data. Bathymetry is an im;ﬁortam parameter needed for both forward
modeling of slope stability and back-calculating shear strength. It was also shown in
Chapter 2 that large variations of shear strength can occur. Shear strength information
is required for forward modeling of slope stability.

In order to more fully understand the impact from both the uncertainty in
bathymetry data and the variability of shear strength on slope stability, further analyses
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must be performed using real data. The resolution of the data must be higher than the
resolution of the data used for the analyses presented in this thesis; because, as shown in
Chapter 3, the magnitude of the values calculated for the correlation structure of shear
strength were on the same order as the uncertainty in the data. Also, it remains
uncertain what the impact of higher resolution data will have on the outcome of slope
stability analyses. In addition, the effects from using more representative cross-sections
which including stratigraphy on back-calculated shear strengths needs to be investigated.
' Knowledge of correlation structures for topography and shear strength are
additional pieces of information which may be useful fér characterizing stability at an
offshore site. The development of correlation structures for topography and shear
strength will increase the reliability of existing shear strength information and can be
used as a tool to help minimize the number of soil samples in deep water needed to

characterize a site for slope stability analyses.
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Appendix A

Back-Calculated Nonlinear Shear Strength "'Resistance’ Envelope

A.1 Introduction

One approach to back-calculating shear strengths is to back-calculate what
Casagrande (1950) called a “resistance_envelo;)e”. Casagrande developed the concept
of a resistance envelope to allow engineers to examine various possible shear strength
envelopes and determine which envelopes are least safe. Casagrande observed that a
problem associated with the limit equilibrium slope stability calculations was that a
particular solution was only good for one set of shear strength values (c and ¢). Thus, if
an engineer wished to reevaluate a design based on a different set of shear strength
parameters the calculations would have to be repeated. Casagrande suggested the
resistance envelope as a means of overcoming this problem.

Casagrande presents the resistance envelope in a figure where the dimensionless
quantity of shear strength divided by the product of the slope height (H) and the unit
weight of the soil (v) was plotted on the vertical axis and the dimensionless quantity of
normal stress divided by the product of the slope height and umit weight of the soil was
plotted horizontal axis. The resistance envelope is nonlinear. An example of the figure
presented m Casagrande's 1950 paper is shown Figure A 1. Casagrande did not indicate

the procedure used to develop the resistance envelope nor present the resistance envelope




 Resistance envelope

Dimensionless shear strength
T/(yH)
v

Dimensionless normal stress
o/(yH)

Figure A.1 Representation of resistance envelope suggested by Casagrande (1950)
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in a form suitable for use: The curve he presented lacked a scale and numerical values
on either axis.

A procedure which can be used to develop a nonlinear shear strength envelope
similar to the envelope suggested by Casagrande is presented in this appendix. The
resulting resistance envelope is plotted as a dimensionless nonlinear shear strength
envelope. Once this envelope is developed, various shear strength envelopes can be
compared to the dimensionless envelope. Two examples are presented to illustrate these

uses.

A.2 Variables

The variables used in the computations for the resistance envelope are shown in
Figure A.2. Various combinations of; slope height (H), buoyant unit weight (),
effective stress cohesion (¢'), and effective stress friction angle (¢') were chosen to

produce selected values of the dimensionless quantity, Ay, expressed by

_YyHtang¢
X

A (D

o

Values used for A, ranged from zero (' = 0) to infinity (¢' = 0) with 46 intermediary
values.

in order to calculate the resistance envelope, pairs of shear strength parameters
{c' and ¢"} which produce a factor of safety of unity must be determined. For 2 given
value of Ay and slope angle it can be shown that there is a unique ¢/yH and tan ¢’ that
will produce a factor of safety equal to one. The following example illustrates this.
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Soil

¢, ¢ and ¥y

Figure A.2 Slope geometry and variables
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Two sets of stability calculations were performed. In the first set of analyses, the values
for the slope height, unit weight and cohesion were varied while keeping the values for
the dimensionless parameters ¢'/(y'H), tand', and A, constant. In the second set of
analyses, values for siope height, unit weight, cohesion, and friction angle were varied in
such a way that the value for Ay remained constant and the values for ¢'/(yH) and tang’
varied. Consider a slope with a slope height of 50 m, buoyant unit weight of 5.0 kN/m’,
effr’ec-tive stress cohesion of 20.0 kPa, effective stress friction angle of 9.13 degrees, and
slope angle of 30 degrees. For these values, A is equal to 2.0, ¢'/(yH) is equal to
(0.080, and tan ¢’ is equal to 0.16] and are shown in Table A.! along with the factor of
safety which was determined to be unity. The effect of changing the values for ¢ and v'
on the factor of safety, while keeping ¢'/{y'H) constant, is shown in the second row of
Table A.1. The effect of changing the values for ¢ and H on the factor of safety, while
keeping c/(y'H) constant, is shown in the third row. And finally, the effect of changing
the values for H and ¥' on the factor of safety, while keeping ¢'/(v'H) constant, is shown
in the fourth row. In all cases the values for ¢'/(y'H) and tan ¢' are constant and the
value for the factor of safety is determined to be one. The final three rows (fifth, sixth,
and seventh rows) shown in Table A1 show the effects from changing &', ¢!, v', and H
on the factor of safety while not keeping ¢'/(y'H) and tan $' constant. The fifth set of
data {fifth row) show the effect from changing ¢ and ¢’ on the factor of safety. The
sixth set of data show the effect from changing ¢' and H on the factor of safety. The
seventh, and final set of data, show the effect from changing ¢ and v' on the factor of
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Table A.1
Table showing that unique values for the dimensionless quantities ¢/(y'H) and tan ¢' are
necessary to produce a factor of safety equal to unity

H | ¢ ¢ | ¢ | C/YH) | tang' | g F
(m) | (N/m’) | (kPa) | (deg)

56.0 5.0 20.0 9.13 0.080 0.161 2.00 1.00
50.0 10.0 40.0 | 913 0.080 0.161 2.00 1.00
100.0 5.0 40.0 913 0.080 0.161 2.00 1.00
100.0 25 200 | 913 0.080 0.161 2.00 1.60
299 5.0 20.0 | 15.00 0.134 0.268 2.00 1.67
50.0 2.5 200 | 18.00 0.163 0.325 2.00 2.03
50.0 3.0 289 | 13.00 0.116 0.231 2.00 1.44

" slope angle of 30° used for all cases




safety. These final three sets of data indicate that for a constant value for the
dimensionless parameter A, the variables ¢, b, v, and ¢' must form unique values for
¢'/{y'H} and tan ¢’ in order for a value for the factor of safety equal to one to be

calculated.

A.3 Stability Analysis

To determine a resistance envelope a series of slope stability calculations was
perfonned. Various combinations of H, ¥, ¢', and §' were chosen and the factor of
safety was calculated. The slope stability program UTEXAS3 (Wright, 1991) was used
to calculate the factor of safety for the various values of H, v, and ¢ and 4 using a slope
angle (B) equal to 30 degrees. Circular shear surfaces were used for all the analyses.
The slopes considered were assumed to be submerged. Thus, buoyant unit weights were

used to compensate for the effects of submergence.

A.4 Methodology
A series three steps were used to calculate the resistance envelope. The steps

are described below.

A.4.1 Determine Combinations of ¢’ and ¢’ Which Produce a Facter of Safety

Equal to One

A series of slope stability calculations was performed for vanious values of .

A slope angle of 30 degrees, slope height of 30.5 m ,and unit weight of 15.7 kN/m’ were
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assumed and kept constant Various vﬂues of ¢' and ¢' were assumed to produce
different values of A5 The 48 combinations of ¢' and ¢’ used in the computations are
shown it Table A.2. For each set of values, slope stability computations were
performed and the factors of safety, shqwn in Table A.2, were determined. Oncea

given set of values for ¢' and ¢' was assumed and the factor of safety calculated, values

of ¢’ and ¢' that produce a factor of safety equal to unity are simply calculated from

#

Cra = 0))

where F is the factor of safety calculated using the assumed shear strength parameters ¢’

and ¢

A.4.2 Determine Minimum Shear Strength Envelope

The Mohr-Coulomb shear strength envelopes required to produce a factor of
safety of unity for the various combinations of ¢ and ¢ (various A,'s) are plotted in
Figure A.3. The envelopes are expressed as shear strength versus normal stress.

For each normal stress in Figure A.3 several shear strengths exist depending on
the particular Mohr-Coulomb envelope. To obtain the resistance envelope the minimum
shear strength for each normal stress was determined and plotted versus normal stress to
obtain the nonlinear envelope shown m Figure A4 The envelope in Figure A 4

represents the lower bound of all the Mohr-Coulomb envelopes in Figure A 3.
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Table A2
Combinations of ¢’ and ¢' and the corresponding factors of safety used in the analyses

Aes ¢ c F Cpey [y
Infinite 36 0.0 1.00 0.0 3G.0
10600 15 4.3 .47 0.6 29.7
000 15 0.3 {147 0.6 29.7
8000 i3 0.3 0.47 0.7 28.7
600 15 0.4 0.47 0.8 29.6
6000 15 0.4 Q.47 0.9 29.6
5000 15 0.5 .47 11 29.56
4000 15 o7 .47 14 29.5
300 15 0.9 .48 1.9 9.4
2000 15 1.3 0.48 2.8 29.2
1000 i5 2.7 .48 55 9.6
00 15 30 0.48 6.2 290
800 i 3.3 .49 6.9 28.9
700 15 3.8 ¢.49 78 28.8
600 13 4.5 (.49 9.1 287
500 13 5.4 .49 10.9 28.6
460 13 6.7 0.50 i35 28.4
306 15 89 0.50 17.8 28.1
200 15 13.4 0.51 26.2 27.6
100 15 26.8 .54 49.7 26.4
90 15 29.8 (.55 54.6 26.2
80 15 335 0.55 60.7 25.9
70 15 38.3 0.56 68.4 25.6
60 15 44,7 0.57 783 25.2
50 15 53.6 (.58 918 24.6
40 15 670 0.60 110.9 39
30 15 £2.3 0.64 140.0 22.8
0 15 134.0 0.69 195.0 213
HY 15 267.9 0.83 324.4 18.0
g 15 2977 0.85 348.6 17.4
8 15 3349 0.89 377.2 16.8
7 15 3828 0.93 411.2 16.1
& 15 446.6 Q.99 452.9 15.2
3 15 535.9 1.06 504.6 14.2
4 15 669.9 1.17 573.0 12.9
3 i$ £63.2 1.34 6655 i1.3
2 ] 13387 1.67 802.2 5.1
i 13 26795 2.60 1031.4 3.9
0.9 15 29772 2.80 1064.1 5.5
4.8 15 33494 3.04 0.3 5.0
0.7 is5 38278 3.38 11409 4.6
0.6 18 44658 377 11861 4.1
5 i5 5359.0 4,33 12374 35
0.4 15 66987 517 12664 3.0
0.3 i5 8931.6 6.33 13672 2.3
0.2 i5 133%7.5 924 1449.5 1.7
G.1 15 167949 17.19 1558.6 4.9
] 0 1808.3 1.00 1808.3 0.0
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Figure A3 Linear shear strength envelopes corresponding to F= 100 and H=305m
for y = 15.7 kN/m’ and B = 30 degrees
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A.4.3 Determine Normalized Nonlinear ""Resistance Envelope"

The resistance envelope shown in Figure A 4 can be expressed in
dimensionless form by dividing the quantities on each axis by the product of the slope
height (H) and the umit weight of the soil {(y). The resulting dimensionless resistance
envelope is shown in Figure A 5 in terms of dimensionless variables, 1/(yH) and o/(yH).
The curve shown in Figure A5 is believed to represent what Casagrande considered the
"resistance envelope” (shown in Figure A.1).

Any linear Mohr-Coulomb shear strength envelope can be plotted in
dimensionless form on Figure A5, If such an envelope lies completely above the
resistance envelope the Mohr-Coulomb envelope will result in a factor of safety in
excess of one for the slope (assuming a slope of 30 degrees). Any Mohr-Coulomb shear
strength envelope that lies or passes below any portion of the resistance envelope will
result in a factor of safety less than one. Mohr-Coulomb envelopes that are tangent to
the resistance envelope will result in factors of safety equal to one.

The dimensionless form of the resistance envelope shown in Figure A5 is
convenient because it is independent of both the slope height and the unit weight of the
soil and is only dependent upon the slope angle. Thus, the calculations necessary to
determine the resistance envelope need only be performed for one value of slope height
and one value of unit weight of the soil. Additional caiculations were performed to
show that the dimensionless resistance envelope is independent of both slope height and

umt weight of the soil, as confirmed by results presented in the following section.
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A5 Verification of Dimensionless Variables
To illustrate the uniqueness of the dimensionless resistance envelope shown in
Figure A5, additional shear strength computations were performed for a slope angle of

30 degrees using different slope heights and unit weights. Results are presented below.

A 5.1 Effect of Slope Height

Figures A.6 and A.7 show the Mohr-Coulomb shear strength envelopes required
to produce factors of safety of unity for 30 degree slopes with heights of 12.2 m and
106.7 m respectively and a unit weight for the soil equal to 15.7 kN/m®. Agéin, the
resistance envelope can be determined by finding the minimum shear strengths
associated with a series of normal stresses for each slope height,

The resistance envelopes determined from the data presented in Figures A.6 and
A.7 are shown in Figure A.8. Also included in Figure A.8 is the resistance envelope
previously determined for the slope height of 30.5 m. The general shapes Qf the implied
resistance envelopes are all similar,

Each of the resistance envelopes in Figure A 8 is replotted in dimensionless
form in Figure A.9 by dividing the quantities on each axis by yH. The resulting

resistance envelopes can be seen to be identical, independent of slope height.
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Figure A.6 Linear shear strength envelopes corresponding to F = 1.00 and H= 122 m
fory = 15.7 kN/m’ and B = 30 degrees
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H = 106.7 m, B = 30 deg, ¥ = 15.7 kN/m3
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Figure A.7 Linear shear strength envelopes corresponding to F=100and H= 1067
m fory = 15.7 kN/m’ and 3 = 30 degrees
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A.5.2 Unit Weight

Additional analyses were performed to investigate the effect of unit weight using
a unit weight 5.5 kKN/m® compared to the value of 15,7 kN/m’ used in the previous
analyses. A unit weight of 5.5 kN/m’, is more representative of the values for
submerged unit weights one might expect for offshore soils. Analyses were performed
for a slope height of 106.7 m and a slope angle of 30 degrees.

Results obtained for these computations were similar to the results obtained in
the previous computations. The resistance envelope determined using a unit weight of
5.5 kN/m’is shown in Figure A.10 along with the envelope obtained previously using a
unit weight of 15.2 kN/m® and a slope height of 106.7 m. Figure A.11 shows the
resistance envelopes plotted in dimensionless form. The envelopes shown in Figure A.11
are identical, indicating that a single dimensionless resistance envelope exists
independent of unit weight.

The results presented in Figures A.9 and A.11 confirm that the dimensionless
resistance envelope is independent of both the unit weight and the height of the slope.
The dimensionless resistance envelope depends only on the slope angle and is presented

again in Figure A.12 for a slope angle of 30 degrees.
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A.6 IHustrative Example Calculations

Resistance envelopes can be used for both accessing stability and back-
calculating shear strength parameters. Use of the dimensionless resistance envelope is
demonstrated using two examples. The first example is a forward analysis to determine
_ if a slope is stable. The second example is a back analysis to determine the shear

strength envelope for a failed slope.

A.6.1 Forward Analyses

¥

For the forward analysis ¢’ and ¢' are assumed to be known and the factor of
safety is to be determined. The following values were assumed: ¢’ = 75 kPa, ¢' =25°% ¥
=17 kN/m’, H = 150 m, and = 30°. The first step is to calculate and plot a shear

strength envelope. The shear strength can be expressed as,

T=c+otand G
T ¢ o

e 2 e A e ' 5
vH yH+lH ¢ ©)

Thus, the slope of the dimensionless, linear shear strength envelope is tan &' and the
intercept is ¢/(vH). An envelope with this slope and mtercept is plotted on a diagram’
along with the corresponding dimensionless resistance envelope in Figure A.13. The
linear Mohr-Coulomb envelope corresponding to the assumed cohesion and friction
angle is represented by the dashed line. Since this envelope does not infersect or Lie

tangent to the resistance envelope the slope is stable. The factor of safety can be
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Figure A.13 Resistance envelope and linear envelope for forward analysis example
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determined by dividing ¢/(yH) and tan ¢’ by an assumed value for the factor of safety
until the linear, dimensionless Mohr-Coulomb envelope lies tangent to the dimensionless
resistance envelope. The value of the factor of safety that places the Mohr-Coulomb
envelope tangent to the dimensionless resistance envelope is then the factor of safety for
the slope. For this problem a value of 1.3 for the factor of safety places the
dimensionless Mohr-Coulomb envelope tangent to the dimensionless resistance envelope

and thus the factor of safety for the slope is 1.3.

A.6.2 Back Analysis

The second analysis is a back analysis for a slope which is assumed to have
f;tiied (F = 1.0). Inthis case it is necessary to assume that either ¢’ or ¢’ is known. For
this example the cohesion was assumed to be known.

The following values were assumed: y' = 5 KN/m*, H=70m, B =30° and ¢’ =
25 kPa. Thus, the dimensionless intercept for the Mohr-Coulomb envelope'/(y'H) is
0.071. Since the slope is assumed to have failed the Mohr-Coulomb envelope must also
be tangent to the resistance envelope. A line can, thus, be drawn with an intercept of
0.071 and tangent to the dimensionless resistance envelope as shown by the dashed hne
in Figure A.14, The resulting envelope has a slope (tan ¢) of 0.185. Thus, the back-‘

calculated friction angle corresponding to ¢’ of 25 kPa is 10.5 degrees (tan”'0.185).
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A.7 Conclusion

A method is presented for determining a dimensionless resistance envelope
following the suggestion of Casagrande (1950). The resistance envelope depends only
on the slope angle and can be used to either determine if a slope is stable or to back-

calculate shear strength. The two examples are presented to illustrate these

applications.
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Appendix B

Source Code for Computer Program VARREDF

VARREDF
INTEGER M, BINSIZE,NUMPAIRS,K,J,I,NUMBIN
REAL COUNT(0:3500)
REAL SUMJ{(0:500),SUMK{0:50C),SUMJIK(0:500)
REAL DELTADIST,SIGMASQ{0:5C0)
REAL LATCOORD(500},PHI (500}, VARREDF (06:560)
REAL V(0:500}, MEAN{C:500), SUMSQ{0:500)
INPUT.DAT FOR INPUT
OPEN (UNIT=1, FILE='INPUT.DAT')
QUTPUT.DAT TO WRITE CUTPUT
OPEN (UNIT=2, FILE='CUTPUT.DAT')

BIN SIZE, NUMBER OF DATA FAIRS AND NUMBER OF BINS
FILE INPUT.DAT

READ (1,*) BINSIZE
READ (1,*) NUMBIN
READ (1,*) NUMPAIRS

DATA PATRS, LATERAL COCRDINATE AND CORRESPONDING

SHEAR STRENGTH

DO 10 I=1,NUMPAIRS, L
READ(1,*) LATCOORD(I),PHI(I)

INITIALIZE MATRICES TO ZERO

DO 15 I=
SUMJT ﬁ )
SUMK(I)=
SUMJK{ I¥=§
COUNT (1)=0.
V{I;=0.
MEAN (I)=0C.

,508,1

€f..‘) CJ! C‘)
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CALCULATE DISTANCE BETWEEN DATA POINTS

Q1

PG 20 J=1,NUMPAIRS-1,1
Do 20 K=J+1,NUMPAIRE, 1
DELTADIST= (LATCQORD (K} ~LATCOCRD (J))

DETERMINE WHICH BIN THE CORRESPONDING DISTANCE JUST
CALCULATED BELONGS

OOao

DO 25 M=NUMBIN,O,~1
IF {DELTADIST .GT. M*BINSIZE) THEN

SUM VALUES FCOR TWO PHIS CORRESPONDING TO THE
ASSCOCIATED BIN

Oaan

SUMJI (M) =PHI (J) +SUMJ (M)

SUMK {M) =PHI (K} +S3UMK{M)

SUMJIK{M) =PHI (J}*PHI (K)+SUMJK (M}
COUNT (M) =COUNT {M) +1

GCTO 20

ENDIF

25 CCNT INUE

20 CONTINUE

C CALCULATE COVARIANCE OF PAIRS OF PHIS IN EACH BIN

DG 30 M=0,NUMBIN,1

C
C IF NO VALUES ARE IN THE BIN SET MEAN AND VARIANCE
C TGO ZERO
C

IF (COUNT (M) .EQ. &) THEN

VM) =0.

MEAN (M)=0,
C
C IF VALUES ARE PRESENT IN THE BIN CALCULATE MEAN
¢ AND COVARIANCE
c

ELSE

VM) =SUMJK (¥} /COUNT (M) ~

1 SUMJ (M) /COUNT (M) * (BUME (M) /COUNT (M}

MEAN (M) =, 5% {SUMJ (M) +SUMK (M) 5 /CCUNT (M)

ENDITE
30 CONTINUE
C
C  CALCULATE VARIANCE FOR ALL BINS
C
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DO 40 J=1,NUMPAIRS~L,1

DO 40 K=J+1,NUMPRIRS, 1

DELTADIST=LATCOORD (K) ~LATCOCRD{J}

DG 50 M=NUMBIN,C,-1

I (DELTADIST .GT. M*BINSIZE) THEN

SUMSQ (M)y=(PHI{J)~MEAN (M)} **2+ (PHI (K}~
MEAN (M) )} **2+3UMSQ (M}

GOTO 40
ELSE
ENDIFE
56 CONTINUE
40 CONTINUE

C
C CALCULATE CORRELATICN COEFFICIENT FOR EACH BIN

C

v

DO 60 M=0,NUMBIN
IF (CCUNT (M) .EQ. 0) THEN
VARREDF (M}=0.

ELSE

SIGMASQ (M) =SUMSQ (M) /COUNT (M) /2.
VARREDF (M) =V (M) /SIGMASQ (M)

Cc
C WRITE oOUTPUT TO QUTPUT.DAT
C
WRITE(2,2000)M*BINSIZE, (M+1)*BINSIZE,
1 VARREDF (M}, COUNT (M)
ENDIF
&0 CONTINUE
c
C CLOSE INPUT AND OUTPUT FILES
C
CLOSE {UNIT=1)
CLOSE (UNIT=2)
C
C FORMAT STATEMENTS
c
2000 FCRMAT ('BIN ', I4,1X,'T0',1X,14,3%, 'CORR.

COEF.',2X,F6.3
1 22X, TCOUNT', 32,F6.0)
C
s70p
END
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Appendix C

Users Manual for VARREDF

C.1 Input

User input consists of information on the size of the bins, the number of bins,
the number of pairs of data points, the lateral coordinates of the data points and the
corresponding value for the effective stress friction angle. Units for the size of the bins
:fmd the lateral coordinates must be length and consistent (English or S.1.). Units for the
effective stress friction angle can be either degrees or radians. The lateral coordinates
where the effective stress friction angles are know must be input in ascending order and
can start from any initial value greater than, less than or equal to zero. Table C.1 show

the format of the input.

C.2 OQutput

The output is composed of a list of information. For each row the upper and
lower bounds for cach bin, the calculated correlation coefficient and the number of
elements in the bin is listed. This line is repeated for the number of bins (NUMBIN) |
specified by the user. An example of two lines of cutput from VARREDF is shown in
Table C.2. For the data shown in the first row of Table C.2; the lower and upper bound
for the bin 1s 0 and 30 (units of length), the computed value for the correlation
coefficient equal to 0.699 {dimensionless), and the number of pairs of data in the bin

equal to 24.




Table C.1

Data input format for VARREDF
Input Data Variable Description
Line No. Field No.
1 1 BINSIZE Size of bins used to determine the correlation
coefficient
2 1 NUMBIN  Number of bins to sort data into. The last

bin will be used as a catch all for any and all
data that would require a larger bin

3 3 NUMPAIRS  Number of pairs of lateral coordinates and
effective stress friction angles to read as
mput.

4 1 LATCOORD Lateral coordinate where the effective stress
friction angle is known

4 2 PHI Corresponding effective stress friction angle.

Repeat Line 4 for additional pairs of data to the number of

pairs of data (NUMPAIRS).
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Table C.2
Data output format for VARREDF

BIN 0TO 30 CORR.COEF. 699 COUNT 24

BIN 30TO60 CORR.COEF. 761 COUNT 63

177




References

Alanzo, E.E. and Krizek, R.J. (1975). “Stochastic Formulation of Soil Properties,”
Proceeding 2™ Conference on Application of Probability and Statistics to Soil and
Structural Engineering Vol. II, Aachen, Germany, pp. 9-32.

Ang, A H-S. and Tang, W H. (1990). Probability Concepis in Engineering
' Planning and Design, Vol. II, John Wiley and Sons, New York, 562 p.

Bea, R.G., Wright, S.G,, Sircar, P. and Niedoroda, A W. (1983). “Wave-Induced Slides
mn South Pass Block 70, Mississippi Delta,” Journal of Geotechnical Engineering,
ASCE, Vol. 109, No. 4, pp. 619-644,

I‘Sishop, AW, Webb, D.L. and Lewin, P.1. (1963). “Undisturbed Samples of London
Clay from the Ashford Common Shaft: Strength-Effective Stress Relationships,”
Geotechnique, Vol. 15, No. 1, pp. I-31.

Bryant, W.R, Dunlap, W A, Rutledge, A K., and Liu, J.Y. (1995). “Continental Slope
Innovative Foundations - Geological Oceanography Support,” World Wide Web
http./fwww-sgiliu tamu edu:443/0TRC/contents. shtml,

Bryant, W., Wetzel, A, and Sweet, W. (1983). “Geotechnical Properties of Intraslope
Basin Sediments, Gulf of Mexico, Deep Sea Dnlling Project Leg 96, Site 619,
Initial Reports of the Deep Sea Drilling Project, Vol. 96, September-November,
pp. 819-824.

Byme, RJ., Kendall, J. and Brown, 8. (1992). “Cause and Mechanism of Failure,
Kettleman Hills Landfill B-19, Unit 1A, Proceedings ASCE Specialty Conference
on Stability and Performance of Slopes and Embankments - II, Vol 1, Berkeley,
Califormia, June 29-July I, pp. 1188-1213. ,

Casagrande, A. (1950). “Notes on the Design of Earth Dams,” Journal of the Boston
Society of Civil Engineers, Vol. 37, No. 4, pp. 231-255.

Chiasson, P, Lafleur, §., Soulié. M., and Law, K.T. (1995). “Characterizing
Spatial Vanability of a Clay by Geostatistics,” Canadian Geotechnical
Journal, Vol. 32, No. 1, pp. 1-54.

Davis, EE., Curnie, R.G., Sawyer, B.S. and Kosalos J.G. (1986). " The Use of Swath
Bathymetric and Acoustic Image Mapping Tools in Marine Geoscience,” Sonar
Technology for Science and Commerce, Vol 20 No. 4, pp. 17-27.

178




Doyle, E.H. (1994) "Geotechnical Considerations for Foundation Design of the Auger
and Mars TLP's," Seventh international Conference on the Behavior of Offshore
Structures, Massachusetts Institute of Technology, July 12-15.

Duncan, JM,, Byme, P, Wong, K.S., and Mabry, P. (1978). “Strength, Stress-Strain
and Bulk Modulus Parameters for Finite Element Analyses of Stresses and
Movements in Soil Masses,” Rep. No. UCB/GT78-02, University of California,
Berkeley, California.

Duncan, M.J. and Stark, T.D. (1992). “Soil Strength from Back Analyses of Slope
Failures,” Proceedings ASCE Specialty Conference on Stability and Performance
of Slopes and Embankments - II, Vol. 1, Berkeley, California, June 29-July 1, pp.
890-904,

Duncan, M.J. and Wright, S.G. (1980). “The Accuracy of Equilibrium Methods of
Slope Stability Analysis,” Engineering Geology, Amsterdam, The Netherlands,
Vol. 16, No. 1/2, July, pp. 88-100.

Fredlund, D.G. and Krahn, J. (1977). “Comparison of Slope Stability Methods of
Analyses,” Canadian Geotechnical Journal, Vol. 14, No. 3, pp. 429-439.

Gilbert, R.B. and McGrath, T.C. (in press) “Design of Site Investigation Programs for -
Geotechnical Engineering,” in Uncertainty Modeling and Analysis in Civil
Engineering, edited by Bilal Ayyub, CRC Press Inc., Boca Raton, FL.

Gilbert, R.B., Wright, $.G., and Liedtke, E.A. (1996). "Uncertainty in Back Analysis of
Slopes," Proceedings of Uncertainty '96, Uncertainty in the Geologic Environment,
Vol. 1, Madison, WI, July 31-August 3.

Hoeg, K. (1986). “Geotechnical Issues in Offshore Engineering,” Marine Geotechnology
and Nearshore/Offshore Structures, ASTM STP 923, R. C. Chaney and H. Y. .
Fang, Eds., American Society for Testing and Materials, Philadelphia, pp. 7-50.

Hoag, K. and Tang, W. (1976). “Probabilistic Considerations in the Foundation
Engineering of Offshore Structures,” Proceedings 2™ ICOSSAR, Aachen,
Germany, 29 p.

Janbu, N. (1954}, “Stability Analysis of Slopes with Dimensionless Parameters,” Soil
Mechanics Series No. 46, Harvard University, January, 81 p.

Keavenly, J., Nadim, F., and Lacasse, S. (1989). “Auto Correlation Functions for
Offshore Geotechnical Data,” Proceedings 5™ ICOSSAR, San Francisco, USA, pp.
263-270.

179




Lacasse, 8. and de Lanballerie, 1Y (1993), “Statistical Treatment of CPT Data,”
Proceedings CPT'93. Linkeping, Sweden.

Lacasse, 8. and Nadim, F. (1996). “Uncertainties in Characterizing Soil Properties,”
Geotechnical Special Publication No. 58, Uncertainty in the Geologic
Environment: From Theory to Practice, Madison, Wisconsin, July 31-August 3,
pp. 49-75.

de Moustier, C. and Kleinrock, M.C. (1986). "Bathymetric Artifacts in Sea Beam Data:
How to Recognize Them and What Causes Them," Journal of Geophysical
Research, Vol. 91, No. B3, pp. 3407-3424,

NOAA (1992). Atlas of NOAA's multibeam sounding data in the Gulf of Mexico
" Exclusive Economic Zone, Vol. 1. NOAA/NOS/Coast and Geodetic Survey,
Rockville, MD, 69 p.

Richards, A F. and Zuidberg, H-M. (1986). “Sampling and In-Situ Geotechnical
Investigations Offshore,” Marine Geotechnology and Nearshore/Offshore
Structures, ASTM STP 923, R, C. Chaney and H. Y. Fang, Eds., American
Society for Testing and Materials, Philadelphia, pp. 51-73.

Seed, R. B., Mitchell, J. K. and Seed, H. B. (1990). “Kettleman Hills Waste Landfill
Slope Failure II: Stability Analyses,” Journal of Geotechnical Engineering ASCE,
Vol. 116, No. 4, pp. 669-690.

Spencer, E. (1967). "A Method of Analysis of the Stability of Embankments Assuming
Parallel Inter-Slice Forces," Geotechnique, UK, Vol. 17, No. 1, pp. 11-26.

Stark, T.D. and Eid, H.T. (1994). “Drained Residual Strength of Cohesive Soils,”
Journal of Geotechnical Engineering, ASCE, Vol. 120, No. 5, pp. 856-871.

Stark, T.D. and Poeppel, AR. (1994). “Landfill Liner Interface Strengths from
Torsional Ring Shear Tests,” Journal of Geotechnical Enginecring ASCE, Vol
120, No. 3, pp. 597-615.

Tang, W. (1979). "Probabilistic Evaluation of Penetration Resistance,” Journal of
{eotechnical Engineering, ASCE Vol. 103, No. 10, pp. 1173-1191.

Tyee, R.C. (1986). "Deep Seafloor Mapping Systems - A Review," Sonar Technology
for Science and Commerce, Vol. 20 No. 4, pp. 4-16.



Vanmarcke, E. (1977). “Probabilistic Modeling of Soil Profiles,” Journal of
Geotechnical Engmeering, ASCE, Vol. 103, No. 11, pp. 1227-1246.

Vanmarcke, E. (1983). Random Fields, MIT Press, Cambridge, Mass, USA, 382 p.

Wright, $.G. (1991). “UTEXAS3 A Computer Program for Slope Stability
Calculations,” The University of Texas at Austin, September, 158 p.



Vita

Eric Arthur Liedtke was born in Santa Monica, California on October 10, 1965,
the son of Constance Elaine Liedtke, He graduated from Arapahoe High School,
Littleton, Colorado in 1984. Eric enrolled in Arapahoe Community College, Littieton
Colorado during the 1989-1990 academic school year before entering Colorado State
University in Fort Collins, Colorado in the Fall of 1990. He received the degree of
Bachelor of Science in Civil Engineering in May 1993. Before entering The Graduate
School at the University of Texas at Austin in January 1995, he served as 2 Peace
Corps Volunteer teaching math and science at the high school level in Sierra Leone,

West Africa.

Publication:
Gilbert, RB.,, Wright, S.G., and Liedtke, E., *Uncertainty in Back Analysis of Slopes,"
Geotechnical Special Publication No. 58, Uncertainty in the Geologic Environment,

Madison, Wisconsif, July 31 - August 3, 1996, pp- 494-517.

Permanent Address:
[ite Woodwind Lane

Austin, Texas 78758

This thesis was typed by the author

182



